Угол САМ=58°
Угол АМС=58°
Угол АСМ=64°
Угол ВМК=58°
Угол МВК=64°
Угол МКВ=58°
Объяснение:
В связи с тем, что сторона АС равна стороне СМ мы понимаем, что треугольник АСМ равнобедренный.
В равнобедренном треугольнике углы при основании равны, а сумма углов треугольников равна 180°
В данном треугольнике углы при основании это угол САМ и угол АМС. Если САМ равен 58°, следовательно и угол АМС будет равен 58°
Углом при вершине в данном треуголнике является угол АСМ, он равен разности суммы углов и суммы двух других сторон, мы получаем:
180-(58+58)=64°
Перемещаемся на треугольник ВМК . Здесь, угол ВМК равен углу АМС , так как они вертикальные.
Отсюда мы получаем , что треугольники АМС и ВМК конгруэнтны.
Следовательно, угол МВК равен углу АСМ(64°), а угол МКВ равен углу САМ(58°).
Объяснение:1. Две прямые называются параллельными, если они
г) не пересекаются на плоскости
2. Две прямые параллельны, если при пересечении их секущей
г) внутренние накрест лежащие углы равны
3.Две прямые параллельны, если при пересечении их секущей
в) сумма внутренних односторонних углов равна 180 градусов;
4.Две прямые параллельны, если при пересечении их секущей
а) соответственные углы равны;
5)Сколько параллельных прямых можно провести через точку не лежащую на данной прямой
б) одну;
6)Две прямые пересечены секущей. Чему равна сумма внутренних односторонних углов, если внутренние накрест лежащие углы равны?
а) 180°
7) Две прямые пересечены секущей. Внутренние односторонние углы в сумме составляют 180 градусов, а один из соответственных углов равен 36 градусов. Чему равен второй из соответственных углов?
г)36°
8). Сумма внутренних накрест лежащих углов при параллельных прямых и секущей равна 220^0. Чему равны эти углы?
в)110°
9). Один из внутренних односторонних углов при параллельных прямых и секущей равен 50 градусов. Найдите второй внутренний односторонний угол. Отв: 180°-50°=130°; Отв: 130°
1)Если две параллельные плоскости пересечены третьей, то линии их пересечения параллельны.
Соединим Д₁ и Е₁.
Получим треугольник Д₁ВЕ₁
Плоскость, в которой лежит треугольник Д₁ВЕ₁, пересекает плоскости α и β
по параллельным прямым ДЕ||Д₁Е₁
2)Параллельные плоскости рассекают стороны угла на пропорциональные части.⇒
Треугольники ВДЕ и ВД₁Е₁ подобны.
В них В - общий угол, а углы при ДЕ и Д₁Е₁ равны по свойству углов при параллельных прямых и секущей.
Следовательно,
ВД₁:ВД=Д₁Е₁:ДЕ
36:24=46:ДЕ
36ДЕ=24*46 Сократим обе стороны уравнения на 12:
3ДЕ=8*46
ДЕ=15 ¹/₃
(Возможно, в записи условия опечатка, и тогда, если Д₁Е₁=45,
отрезок ДЕ= 15)