C2(s 6). медианы треугольника abc пересекаются в точке м. найдите длину медианы, проведенной к сто- роне bc, если угод вас равен 47°, угол вмс равен 133 bc = 4/3
Осуждённый проглотил выбранную им бумажку. Чтобы установить, какой жребий ему выпал, судьи заглянули в оставшуюся бумажку. На ней было написано: «смерть». Это доказывало, что ему повезло, он вытащил бумажку, на которой было написано: «жизнь».
Как в случае, о котором рассказывает загадка, при доказательстве возможны только два случая: можно… или нельзя… Если удастся убедится, что первое невозможно (на бумажке, которая досталась судьям, написано: «смерть»), то сразу можно сделать вывод, что справедлива вторая возможность (на второй бумажке написано: «жизнь»).
АС = ВС = АВ = а = 3√3 см. Ребро ДС = 5см МС - медиана и высота, т.к. треугольник АВС правильный. (МС перп. АВ) МС = а·sin 60 = 3√3 · 0.5 √3 = 4.5cм В ΔМДС гипотенуза ДС = 5см, катет МС = 4,5см, катет МД найдём по теореме Пифагора МД² = ДС² - МС² = 25 - 20,25 = 4,75 = 19/4 МД = 0,5√19 см Площадь ΔМДС равна половине произведения катетов МС и МД S МДС = 0,5·4,5·0,5√19 = 1,125 √19 или (9√19)/8 см² ответ: (9√19)/8 см² PS что-то странный ответ получился. Посмотри, данные вы не перепутали? Может, величина стороны корень из 3 делить на три или ещё что?
Thank
Объяснение:
Осуждённый проглотил выбранную им бумажку. Чтобы установить, какой жребий ему выпал, судьи заглянули в оставшуюся бумажку. На ней было написано: «смерть». Это доказывало, что ему повезло, он вытащил бумажку, на которой было написано: «жизнь».
Как в случае, о котором рассказывает загадка, при доказательстве возможны только два случая: можно… или нельзя… Если удастся убедится, что первое невозможно (на бумажке, которая досталась судьям, написано: «смерть»), то сразу можно сделать вывод, что справедлива вторая возможность (на второй бумажке написано: «жизнь»).