Казалось бы, очевидно, что расстоянием между АВ и КD является АD=5. Но это утверждение следует доказать. ------ 1)Если одна из двух прямых лежит в некоторой плоскости, а другая прямая пересекает эту плоскость в точке, не лежащей на этой прямой, то эти прямые скрещивающиеся.
КD пересекает плоскость квадрата АВСD в точке, не лежащей на прямой АВ. КD и АВ - скрещивающиеся.
2)Прямые КD и СD пересекаются. Следовательно, через них можно провести плоскость, притом только одну. АВ и СD параллельны как противоположные стороны квадрата.
Если прямая, не лежащая в данной плоскости, параллельна какой-нибудь прямой, лежащей в этой плоскости, то она параллельна самой плоскости.
Расстояние между скрещивающимися прямыми – это расстояние между одной из скрещивающихся прямых и параллельной ей плоскостью, проходящей через другую прямую.
Расстояние между АВ и КD - это расстояние между АВ и плоскостью КDС
Расстояние между параллельными прямой и плоскостью – это расстояние от любой точки заданной прямой до заданной плоскости.
Расстояние между АВ и плоскостью КDС - это длина перпендикулярного АВ и КD отрезка АДD. Расстояние между прямыми АВ и КD равно 5 см.
Прежде чем решать задачу вспомним теорию: что такое "Пифагоров треугольник"?
будем говорить о Пифагоровой тройке: Это такие натуральные числа у которых выполняется равенство . т.е. Пифагоров треугольник это треугольник с целочисленными значениями для которых выполняется данное равенство.
Египетский треугольник это частный случай Пифагорова треугольника, т.е. к такому набору дополняется условие что
Пример числа 5,12,13 - Пифагоровы т.к. справедливо что но они не будут образовывать Египетский треугольник т.к. 5:12:13 ≠ 3:4:5
Теперь перейдем к решению:
1) Найдет все стороны треугольника
По т. Пифагора второй катет:
Измерения треугольника 15,20,25
Этот треугольник Пифагоров т.к. стороны выражены целыми числами и справедливо равенство 15²+20²=25²
Проверим, будет ли такой треугольник Египетским:
Египетский треугольник: Это прямоугольный треугольник с целочисленными сторонами и отношение сторон 3:4:5
Проверим отношение сторон в нашем треугольнике
15:20:25= 3:4:5
Значит такой треугольник Пифагоров и как частный случай Египетский
2) Треугольник с катетами 4,5
найдем гипотенузу
по определению измерение гипотенузы не целочисленное- значит такой треугольник не будет Пифагоровым
Периметр прямоугольника - это сумма всех сторон прямоугольника. У Вас известна одна сторона, которая равна 1,5 см. Значит, Вам нужно узнать вторую сторону, которая в 4 раза больше первой стороны. Раз она в 4 раза больше, то первую сторону (1,5 см) нужно умножить на 4. У Вас получится вторая сторона. Затем, Вы можете сложить эти стороны и умножить их на 2, так как, сложив первые две стороны, у Вас получится только по одной длине и ширине, а в прямоугольнике две длины и две ширины. Когда Вы умножите на 2 - получится сумма всех сторон, а это и есть периметр.
Но это утверждение следует доказать.
------
1)Если одна из двух прямых лежит в некоторой плоскости, а другая прямая пересекает эту плоскость в точке, не лежащей на этой прямой, то эти прямые скрещивающиеся.
КD пересекает плоскость квадрата АВСD в точке, не лежащей на прямой АВ.
КD и АВ - скрещивающиеся.
2)Прямые КD и СD пересекаются.
Следовательно, через них можно провести плоскость, притом только одну.
АВ и СD параллельны как противоположные стороны квадрата.
Если прямая, не лежащая в данной плоскости, параллельна какой-нибудь прямой, лежащей в этой плоскости, то она параллельна самой плоскости.
⇒Прямая АВ параллельна плоскости КDС, содержащей КD
Расстояние между скрещивающимися прямыми – это расстояние между одной из скрещивающихся прямых и параллельной ей плоскостью, проходящей через другую прямую.
Расстояние между АВ и КD - это расстояние между АВ и плоскостью КDС
Расстояние между параллельными прямой и плоскостью – это расстояние от любой точки заданной прямой до заданной плоскости.
Расстояние между АВ и плоскостью КDС - это длина перпендикулярного АВ и КD отрезка АДD.
Расстояние между прямыми АВ и КD равно 5 см.