Abd - равнобедренный треуг. ad - основание. биссектрисы углов a и d пересекаются в точке e. угол aed треугольника aed равен 100 градусов. найдите углы треуг. abd
Утверждения,которые выводятся непосредственно из аксиом или теорем,называются следствиями.
Если прямая пересекает одну из двух параллельных прямых,то она пересекает и другую.
Доказательство: Пусть прямыеa и параллельны и прямая с пересекает прямую а в точке М.Докажем,что прямая спересекает и прямую b.Если бы прямая с не пересекала прямуюb, то через точку М проходили бы две прямые(прямые а ис),параллельные прямой b.Но это противоречит аксиоме параллельных прямых , и, значит, прямая с пересекает прямую b
1)Аксиома на плоскости через точку, не лежащую на данной прямой, можно провести единственную прямую, параллельную данной 3)1.док-во преположим обратное. угол 1 не равен углу 2 2.доп.постр. построим через точку А прямую а1 которая пересекается с прямой C под углом равным углу первому, то есть угол 3 равен углу 1 3.получили: прямая а1 и в с-секущая угол 1 и угол 3 внутр.накрест лежащие угол 1 равен углу 3, след.а1 || в по признаку 4.получили: через точку А не лежащую на прямой B проходит две прямые а и a1 параллельные прямой в(а ||в по усл.,а1||в по док.) что противоречит аксиомы параллельных прямых след. предположение сделано неверно и остается утверждать что угол 1 равен углу 2 это точно правильно,так как уже проходили)
АЕД = 180 - (ЕАД + ЕДА), ЕАД +ЕДА = 180 - АЕД = 180-100 = 80, поскольку ЕАД=ЕДА=40. Значит угол А и Д равны 80, а угол Д = 180- (80+ 80)= 20