треугольник АВС, АС основание, ВН высота на АС, АМ - медиана на ВС, ВМ=МС, СК биссектриса угла С, МН-отрезо, О - пересечение отрезка и биссектрисы, КО=ОС, ОН=ОМ, треугольник МНС прямоугольный, МН-медиана в этом треугольнике=1/2 гипотенузы ВС=ВМ=МС, треугольник МНС равнобедренный, МН=МС, но СО биссектриса=медиане (ОН=ОМ). значит треугольник равносторонний, все углы=60, ОМ- средняя линия треугольника КВС и параллельна ВК, тогда уголНМС=60=уголВ как соответственные, уголС=180-60-60=60, треугольник АВС равносторонний
Две точки А и А' плоскости называются симметричными относительно прямой с, если эта прямая проходит через середину отрезка АА' и перпендикулярна к нему. Каждая точка прямой c считается симметричной самой себе.
Соответствие, при котором каждой точке А сопоставляется симметричная ей относительно прямой с точка А', называется осевой симметрией. Прямая с называется осью симметрии.
Две фигуры F и F' называются симметричными относительно оси с, если каждой точке одной фигуры соответствует симметричная точка другой фигуры.
Фигура F называется симметричной относительно оси с, если она симметрична сама себе.
Примем без доказательства, что при симметрии прямые переходят в прямые, причем сохраняются расстояния и углы.
Представление об осевой симметрии дает перегибание листа бумаги. При этом линия сгиба будет осью симметрии, а каждая точка листа совместится с симметричной точкой.
В природе оси симметрии имеют листья деревьев, лепестки цветов, бабочки, стрекозы и мн. др