В подобных треугольниках ABC и KMN равны углы В и М, С и N, АС = 3 см, KN = 6 см, MN = 4 см, ∠А = 30°
Найти: а) ВС, б) S (АВС) / S (KMN) в) AD / BD
a) ВС / MN = AC / KN ВС = AC * MN / KN = 3 * 4 / 6 = 2 см Т. к. треугольники подобны, то соответственные углы равны, поэтому - ∠K = ∠А = 30°
в) Т. к. линейные размеры треугольника KMN в два раза больше треугольника АВС, то отношение площади тр-ка KMN к площади тр-ка АВС = 4, или: S (АВС) / S (KMN) = 1 / 4 (отношение площадей фигур равно квадрату отношений их сторон) .
в) Пусть биссектриса угла С делит сторону АВ в точке D. Тогда биссектриса угла делит противоположную сторону треугольника в отношении соседних сторон, т. е: AD / BD = АС / ВС = 3 /2
Треугольники AMC и BMC подобны. В подобных треугольниках углы попарно равны. ∠АМС=∠ВМС - по условию. ∠ВСМ≠∠АСМ в противном случае дуга АД была бы равной дуге АД, что в свою очередь ведет к равенству дуг СВД и САД. Из этого получим, что СД - диаметр окружности, перпендикулярный хорде. Тогда получим, что АМ=МВ, что противоречит условию задачи. Значит ∠ВСМ=∠САМ. Составим отношение сходственных сторон в подобных треугольниках. АС/СВ=СМ/МВ=АМ/СМ. В два последних отношения подставим известные данные, получим СМ/9=4/СМ, СМ²=36, СМ=6 Если две хорды окружности, AB и CD пересекаются в точке M, то произведение отрезков одной хорды равно произведению отрезков другой хорды. АМ*МВ=СМ*МВ