М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
HeeeeelpPlz
HeeeeelpPlz
27.07.2022 00:19 •  Геометрия

Найдите сторону правильного шестиугольника, описанного около окружности, радиус которой равен 5√3

👇
Ответ:
funtic20
funtic20
27.07.2022
Если из центра окружности, вокруг которой описан правильный шестиугольник, провести две прямые до пересечения с началом и концом одной из сторон шести угольника, мы получим равносторонний (угол между радиусами равен 360 градусов :6 = 60 градусов) треугольник, высота которого равна радиусу окружности. Как известно, высота, опущенная на сторону равностороннего треугольника, делит ее пополам. Тогда, сторона шести угольника, она же сторона равностороннего треугольника, она же гипотенуза прямоугольного треугольника, один катет которого - радиус окружности, а другой - половина половина гипотенузы, можно вычислить по формуле: а² =r² +(a/2)²; a= 2r/√ 3; Подставляем значение r=5√ 3; a=10.
4,5(7 оценок)
Открыть все ответы
Ответ:

Задача:

Длина окружности, вписанной в правильный треугольник, равна 12π см. Найдите периметр треугольника.

Чтобы найти периметр правильного Δ, нужно знать сторону; что найти сторону, нужно найти радиус вписанной окружности.

Дня нахождения радиуса окружности, воспользуемся формулой длины окружности и выразим из нее радиус:

    l=2\pi r \:\:= \:\:r=\frac{l}{2\pi } \\\\r=\frac{12\pi }{2\pi } =6 \:\:(cm)

Теперь воспользуемся формулой радиуса вписанной окружности в правильный треугольник для нахождения стороны Δ:

    r=\frac{a}{2\sqrt{3} } \:\: = \:\: a= r\cdot 2\sqrt{3}\\\\a=6 \cdot 2\sqrt{3} = 12\sqrt{3} \:\: (cm)

Осталось за малым — периметр правильного треугольника:

    P = 3a = 3\cdot 12\sqrt{3} = 36\sqrt{3}\:\: (cm)

Периметр треугольника равен 36√3 см.

4,8(68 оценок)
Ответ:

32дм²

Объяснение:

Диагонали квадрата равны. Квадрат - это ромб, а площадь ромба равна половине произведения его диагоналей. Можно применить формулу площади ромба для нахождения площади квадрата:

S = \frac{1}{2} *d*d = \frac{1}{2} *8 * 8 = \frac{1}{2} *64 = 32 (дм²)

Диагональ квадрата образует с двумя его сторонами прямоугольный треугольник, причем диагональ при этом является гипотенузой этого треугольника.

Пусть сторона квадрата x дм, тогда по теореме Пифагора:

x² + x² = 8²

2x² = 64

x² = 32

x = √32 = √16*2 = 4√2 (дм)

Площадь квадрата x², то есть площадь равна 32дм²

4,6(26 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ