Если при пересечении двух прямых третьей соответственные углы равны, то прямые параллельны.
Пусть соответственные углы равны, например / 3 = / 2; / 3 = / 1, как углы вертикальные; значит, / 2 будет равен / 1. Но углы 2 и 1 — внутренние накрест лежащие углы, а мы уже знаем, что если при пересечении двух прямых третьей внутренние накрест лежащие углы равны, то эти прямые параллельны. Следовательно, АВ || СD.
Номер 1 Рассмотрим треугольник AOC и треугольник BOD: угол AOC равен углу BOD(как вертикальные) AO=OB и CO=OD(по условию,т.к. точка серединой является O) значит треугольник AOC равен треугольнику BOD(по двум сторонам и углу между ними) значит угол DAO равен углу CBO(в равных треугольниках против равных сторон лежат равные углы)
номер 2: Рассмотрим треугольник ABD и треугольник ADC: по условию угол BDA равен углу ADC сторона AD-общая и по условию угол BAD=углу DAC(т.к. AD биссектриса) Значит треугольник ABD равен треугольнику ADC(по двум углам и стороне между ними) значит сторона AB=AC(т.к. в равных треугольниках против равных углов лежат равны стороны)
Если при пересечении двух прямых третьей соответственные углы равны, то прямые параллельны.
Пусть соответственные углы равны, например / 3 = / 2;
/ 3 = / 1, как углы вертикальные; значит, / 2 будет равен / 1. Но углы 2 и 1 — внутренние накрест лежащие углы, а мы уже знаем, что если при пересечении двух прямых третьей внутренние накрест лежащие углы равны, то эти прямые параллельны. Следовательно, АВ || СD.
На рисунке соответствующие углы.