1. Угол между наклонной к плоскости и плоскостью - это угол между наклонной и ее проекцией на плоскость. Искомый угол - угол МАО. Высота правильного треугольника равна h=(√3/2)*a = (√3/2)*2√3=3. АО=(1/3)*h = 1 (свойство медианы). Tg(<MAO) = MO/AO = √3.
ответ: α = arctg√3 = 60°
2. Искомый угол - угол между наклонной и ее проекцией, то есть угол АВК. Sin(<ABK) = KA/KB = AC*tg60/5 = 5√3/11. <ABK = arcsin(0,787) ≈ 51,9°.
3. Опустим перпендикуляры SP и SH из точки S к сторонам АВ и АD соответственно. Прямоугольные треугольники APS и AHS равны по гипотенузе и острому углу. Значит АР=АН и АРОН - квадрат. тогда АО = АН*√2 (диагональ квадрата), АS = 2*АН (в треугольнике ASH катет АН лежит против угла 30°, а AS - гипотенуза). Косинус искомого угла (между наклонной AS и плоскостью АВСD, равного отношению проекции наклонной к наклонной) = АО/AS = АН√2/(2*АН) = √2/2.
ответ: искомый угол равен 45°.
Пусть второе основание трапеции равно Х. Тогда боковые стороны равны по 2 + Х/2 (если в четырехугольник можно вписать окружность, то суммы противоположных сторон равны). Проведем высоту ВЕ. Ее длина равна диаметру вписанной окружности, то есть 2.
АЕ = (4 - Х) / 2 = 2 - X/2.
По теореме Пифагора из прямоугольного треугольника АВЕ
(2 + Х/2)² = 2² + (2 - X/2)²
4 + 2 * X + X²/4 = 4 + 4 - 2 * X + X²/4
(2 + 2) * X = 4 + 4 - 4
X = 1
Тогда периметр трапеции Р = 2 * (4 + 1) = 10.