Переводчик не знает слово "госьрі". Предполагаю, что это "острые".
Дано:
∠ABC = 90°
∠NCA : ∠MAC = 17:13
Найти: ∠BAC, ∠BCA
∠NCA = 180° – ∠BCA
∠MAC = 180° – ∠BAC
(180° – ∠BCA) : (180° – ∠BAC) = 17 : 13
(180° – ∠BCA) = 17 · (180° – ∠BAC) / 13
∠BCA = 180° – 17 · (180° – ∠BAC) / 13
Сумма углов треугольника равна 180°:
∠BCA + ∠BAC + ∠ABC = 180°
Подставим значения для ∠BCA и ∠ABC:
180° – 17 · (180° – ∠BAC) / 13 + ∠BAC + 90° = 180°
17 · (180° – ∠BAC) / 13 – ∠BAC = 90°
17 · (180° – ∠BAC) – 13 · ∠BAC = 13 · 90°
17 · 180° – 30 · ∠BAC = 13 · 90°
30 · ∠BAC = 17 · 180° – 13 · 90° = 1890°
∠BAC = 1890° / 30 = 63°
Из суммы углов треугольника:
∠BCA = 180° – ∠BAC – ∠ABC = 180° – 63° – 90° = 27°
ответ: ∠BAC = 63°, ∠BCA = 27°.
1)Наименьшая сторона лежит против наименьшего угла. В данном случае наименьший угол А(2), значит ВС - наименьшая сторона. ответ: BC
2)Так как треугольник равнобедренный, то у него две стороны равны, а третья - основание. Одинаковые стороны не могут быть меньше суммы основания, значит основание = 13 см. ответ: 13 см.
3) Дано: ABC-равнобедренный, AC-основание, AK и СМ-высоты, BM=8 см. Найти: ВК
Решение: Рассмотрим треугольник АБК и БМС-прямоугольные треугольники, AB=BC(т.к. треуг. АБС - равнобедренный), угол Б-общий, =>, треуг. АБК=треуг.БМС (гипотенуза и острый угол),=>МБ=БК=8см ответ: БК=8см
4) Дано: треугольник АВС - прямоугольный, ∠С=90°, АВ=54 см, ∠А=45°.Найти СН.СН - высота треугольника и кратчайшее расстояние от т. С до прямой АВ.
Δ АВС - равнобедренный, т.к. ∠А=∠В=45°, ⇒ АС=СВ, АН=ВН=54:2=27 см. Найдем высоту СН по теореме Пифагора: СН=√(АН*ВН)=√(27*27)=27 см. ответ: 27 см.
5) ΔСАК=ΔАКР, так как ∠САК=∠КАР (АК-биссектриса по условию), гипотенуза АК-общая. В равных треугольниках против равных углов лежат равные стороны⇒СК=КР, ч.т.д.
- АВ=СВ, т.к. АВС равнобедренный;
- ВМ - общая сторона;
- углы АВМ и СВМ равны, т.к. в равнобедренном АВС медиана BD, проведенная к основанию, является также и биссектрисой.
2). Треугольники AMD и CMD также равны по первому признаку равенства:
- AD=CD, т.к. BD - медиана АВС;
- MD - общая сторона;
- углы ADM и CDM - прямые, т.к. в равнобедренном АВС медиана BD, проведенная к основанию, является также и высотой.