М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
mishamanoaa
mishamanoaa
16.10.2021 19:21 •  Геометрия

Яне могу решить : один из углов получившихся при пересечение двух прямых равен 118 чему равны остальные углы

👇
Ответ:
Никита27031
Никита27031
16.10.2021
Вони дорівнюють 72 градуси
4,6(26 оценок)
Ответ:
ксюша1707
ксюша1707
16.10.2021
118, 62, 62. Вертикальные углы равны, поэтому противолежащий углу в 118 градусов угол тоже равен 118 градусов. Дальше, всего они образуют 360 градусов, поэтому отнимаем от 360 118*2. И делим на 2, так как вертикальные углы равны. Будет 62 градуса. Можешь проверить:)
4,7(66 оценок)
Открыть все ответы
Ответ:
picpic1
picpic1
16.10.2021
Опишем окружность около треугольника АВС. Диаметр этой окружности лежит вне этого треугольника, так как угол <B - тупой (дано).
<MCL=90°, как угол между биссектрисами двух смежных углов (свойство).
Значит <CLM=45° (так как CL=CM - дано).
Тогда <LAС+<LCA=45° (так как внешний угол ВLC равен сумме двух внутренних, не смежных с ним). Умножим на 2 обе части этого уравнения:
2<LAK+2<LCA=90° или 2<BAC+<BCA=90°. Но <BAC+<BCA=180°-<ABC тогда <BAC+180°-<ABC=90° или <BАC=<ABC-90°.
Проведем через точку А диаметр АК описанной окружности.
Тогда <АСК=90°, как угол, опирающийся на диаметр.
<AКC=180°-<AВC, так как опираются на одну хорду.
<KAC=180°-<ACK-<AKC или
<KAC=180°-90°-180°+<AВC или <KAC=<AВC-90°.
То есть <KAC=<BАC. Это вписанные углы и дуги ВС и КС равны.
Отсюда КС=ВС=5, как хорды, стягивающие равные дуги.
Тогда по Пифагору AK=√(АС²+СК²) или АК=√(12²+5²)=13.
Это диаметр. Значит радиус описанной окружности равен 6,5.
ответ: R=6,5.

Биссектрисы внутреннего и внешнего углов при вершине ступоугольного треугольника авс пересекают прям
4,7(87 оценок)
Ответ:
ЛюБИмИЦа55
ЛюБИмИЦа55
16.10.2021

Хочу тебе объяснить чтобы ты могла решать все в миг без Смотри вот уравнение прямой на плоскости

Определение. Любая прямая на плоскости может быть задана уравнением первого порядка

Ах + Ву + С = 0,

причем постоянные А, В не равны нулю одновременно. Оно называют общим уравнением. В зависимости от значений постоянных А,В и С возможны следующие частные случаи:

•  C = 0, А ≠0, В ≠ 0 – проходит через начало координат

•  А = 0, В ≠0, С ≠0 { By + C = 0}- параллельна оси Ох

•  В = 0, А ≠0, С ≠ 0 { Ax + C = 0} – параллельна оси Оу

•  В = С = 0, А ≠0 – совпадает с осью Оу

•  А = С = 0, В ≠0 – совпадает с осью Ох

Уравнение прямой на плоскости может быть представлено в различном виде в зависимости от каких – либо заданных начальных условий.

Уравнение прямой по точке и вектору нормали

Определение. В декартовой прямоугольной системе координат вектор с компонентами (А, В) перпендикулярен прямой Ах + Ву + С = 0.

Пример. Найти прямую, проходящей через точку А(1, 2) перпендикулярно вектору вектор n(3, -1).

Решение. Составим при А = 3 и В = -1 уравнение: 3х – у + С = 0. Для нахождения коэффициента С подставим в полученное выражение координаты заданной точки А. Получаем: 3 – 2 + C = 0, следовательно, С = -1. Окончательно получим: 3х – у – 1 = 0.

Уравнение прямой, проходящей через две точки

Пусть в заданы две точки M 1 ( x 1 , y 1 , z 1 ) и M2 ( x 2, y 2 , z 2 ), тогда прямая, проходящей через эти точки:

уравнение прямой на плоскости

Если какой-либо из знаменателей равен нулю, следует приравнять нулю соответствующий числитель.На плоскости, записанное выше, упрощается:

уравнение прямой на плоскости

если х 1 ≠ х2 и х = х 1 , если х 1 = х2 .

Дробь угловой коэффициент= k называется угловым коэффициентом .

Пример. Найти прямую, проходящей через точки А(1, 2) и В(3, 4).

Решение. Применяя записанную выше формулу, получаем:

уравнение линии

Уравнение прямой по точке и угловому коэффициенту

Если общее уравнение прямой на плоскости Ах + Ву + С = 0 привести к виду:

уравнение с угловым коэффициентом

и обозначить уравнение с угловым коэффициентом, то полученное уравнением с угловым коэффициентом k .

Уравнение прямой по точке и направляющему вектору

По аналогии с пунктом, рассматривающим уравнение через вектор нормали можно ввести задание прямой через точку и направляющий вектор.

Определение. Каждый ненулевой вектор направляющий вектор( α1 , α2 ), компоненты которого удовлетворяют условию А α1 + В α2 = 0 называется направляющим вектором прямой

Ах + Ву + С = 0.

Пример. Найти прямую с направляющим вектором вектор a(1, -1) и проходящей через точку А(1, 2).

Решение.Будем искать в виде: Ax + By + C = 0. В соответствии с определением, коэффициенты должны удовлетворять условиям:

1 * A + (-1) * B = 0, т.е. А = В.

Тогда получим вид: Ax + Ay + C = 0, или x + y + C / A = 0. при х = 1, у = 2 получаем С/ A = -3, т.е. искомое:

х + у - 3 = 0

Уравнение прямой в отрезках

Если в общем уравнении Ах + Ву + С = 0 С≠0, то, разделив на –С, получим: прямая в отрезках или

соотношение в отрезках, где

введем обозначения

Геометрический смысл коэффициентов в том, что коэффициент а является координатой точки пересечения прямой с осью Ох, а b – координатой точки пересечения с осью Оу.

Пример. Задано общее уравнение х – у + 1 = 0. Найти его в виде прямой в отрезках.

С = 1, получено уравнение в отрезках, а = -1, b = 1.

Нормальное уравнение прямой

Если уравнение прямой на плоскости Ах + Ву + С = 0 умножить на число нормирующий множитель, которое называется нормирующем множителем , то получим

xcosφ + ysinφ - p = 0 –

нормальное уравнение. Знак ± нормирующего множителя надо выбирать так, чтобы μ * С < 0. р – длина перпендикуляра, опущенного из начала координат на прямую, а φ - угол, образованный этим перпендикуляром с положительным направлением оси Ох.

Пример. Дано 12х – 5у – 65 = 0. Требуется написать различные типы уравнений этой линии.

уравнение в отрезках: линия в отрезках

уравнение с угловым коэффициентом: (делим на 5)

уравнение с угловым коэффициентом

нормальное уравнение:

; cos φ = 12/13; sin φ= -5/13; p = 5.

Cледует отметить, что не каждую прямую можно представить в отрезках, например, параллельные осям или проходящие через начало координат.

Пример. Прямая отсекает на координатных осях равные положительные отрезки. Найти её, если площадь треугольника, образованного этими отрезками равна 8 см 2 .  По сути все легко подумай сама и ты справишся

4,7(63 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ