Треугольник АВС - р/б с углом при основании = 60 град. Из вершины треугольника (т.В) проведена высота ВН на основание треугольника АС. Найти высоту ВН, если боковая сторона АВ=ВС=6 см.
Т.к. АВС р/б, то высота проведенная из вершины является и биссектрисой и медианой.
Угол В= 180-60-60=60 см, значит треугольник АВС - равносторонний, тогда угол АВН=СВН=30 град. акже, если АВС - р/с, то АВ=ВС=СА=6см. Тогда, т.к. ВН - медиана, то АН=6/2=3 см. Тогда ВН по т Пиф: ВН=√(6*6-3*3)=√(36-9)=√27=√(9*3)=3√3 см
ответ: ВН=3√3 см.
Рисунок во вложении..................................... ©
Построение сечения.
1. Проводим пряную ЕF до пересечения с продолжениями отрезков
СВ (F1) и СD (Е1). ЕF -линия пересечения секущей плоскости и плоскости основания.
2. Проводим прямую НF1, пересечение этой прямой с ребром ВВ1 -
точка G. GH - линия пересечения секущей плоскости и грани ВВ1С1С.
3. Соединим точки F и G. FG - линия пересечения секущей плоскости и грани АА1В1В.
4. Плоскости АВСD и А1В1С1D1 параллельны, значат линия НК пересечения секущей плоскости и грани А1В1С1D1 будет проходить через точку Н параллельно прямой ЕF.
5. Проводим прямую КЕ1, пересечение этой прямой с ребром DD1 -точка Р. КР -линия пересечения секущей плоскости и грани DD1C1C.
6. Соединим точки Р и Е. РЕ -линия пересечения секущей плоскости и грани АА1D1D.
Нахождение угла.
Угол между плоскостью сечения EFGHKP и плоскостью А1ВD -угол
A1RQ = α, образованный пересечением указанных плоскостей плоскостью, перпендикулярной к обеим плоскостям, то есть перпендикулярной к линии пересечения МN данных двух плоскостей.
Заметим, что этот угол равен углу А1ОС1, так как QL параллельна С10
(так как LО=С1Q, потому что EF - средняя линия прямоугольного треугольника АЕF и АL=LO=C1Q). Половина диагонали основания
(квадрата со стороной а) СО равна а*√2/2.
А тангенс угла С10С равен СС1/СО = а*2/а*√2 = √2.
По таблице тангенсов угол С10С ≈ 55°. Значит и симметричный с ним угол А1ОА =55°, их сумма равна 110°, а дополняющий эти два угла до развернутого искомый угол равен 180°-110°=70°.
ответ: угол между плоскостями FGНКРЕ и A1BD ≈ 70°.
ответ в приложенном рисунке.
Дано:
трапеция QSMR
QS=MR
QR-SM=8м
EF-средняя линия=20 м
Найти:
SM И QR
EF=1/2*(QR+SM)
известно, что QR-SM=8 ⇒ QR=SM+8
20=1/2*((SM+8)+SM)
40=2SM+8
2SM=32
SM=16
QR=16+8=24
ответ. QR=24 м, SM=16 м