Проверим квадраты сторон треугольника АВС:
AB=5, BC=12, AC=13.
5² +12² = 25 + 144 = 169,
13² = 169. Треугольник АВС - прямоугольный, угол АВС - прямой.
Поэтому треугольник АМС лежит в вертикальной плоскости.
Проверим квадраты сторон треугольника ВМС:
ВМ=15, BC=12, МC=9.
9² +12² = 81 + 144 = 225,
15² = 225. Треугольник ВМС - прямоугольный, угол ВМС - прямой.
Угол α между плоскостями треугольника ABC и прямоугольника ABMN соответствует плоскому углу МВС.
α = arc sin(MC/BM) = arc sin(9/15) = arc sin(3/5) = 0,643501 радиан = 36,8699°.
Пересечение двух сфер Линия пересечения двух сфер есть окружность .
Объяснение:
Пусть O1 и O2 – центры сфер и A – их точка пересечения. Проведем через точку A плоскость α, перпендикулярную прямой O1O2.
Обозначим через B точку пересечения плоскости α с прямой O1O2. По теореме сечение шара плоскостью плоскость α пересекает обе сферы по окружности K с центром B, проходящей через точку A. Таким образом, окружность K принадлежит пересечению сфер.
Докажем, что сферы не имеют других точек пересечения, кроме точек окружности K. Допустим, точка X пересечения сфер не лежит на окружности K. Проведем плоскость через точку X и прямую O1O2 . Об этом говорит сайт https://intellect.icu . Она пересечет сферы по окружностям с центрами O1 и O2. Эти окружности пересекаются в двух точках, принадлежащих окружности K, да еще в точке X. Но две окружности не могут иметь больше двух точек пересечения.
1) пересекающиеся
2) скрещивающиеся