На сторонах угла∡ABC точки A и C находятся в равных расстояниях от вершины угла BA=BC. Через эти точки к сторонам угла проведены перпендикуляры AE⊥BA CD⊥BC.
1. Чтобы доказать равенство ΔAFD и ΔCFE, докажем, что ΔBAE и ΔBCD, по второму признаку равенства треугольников:
BA=BC
∡BAF=∡BCF=90°
∡ABC — общий.
В этих треугольниках равны все соответсвующие эелементы, в том числе BD=BE, ∡D=∡E.
Если BD=BE и BA=BC, то BD−BA=BE−BC, то есть AD=CE.
Очевидно равенство ΔAFD и ΔCFE также доказываем по второму признаку равенства треугольников:
AD=CE
∡DAF=∡ECF=90°
∡D=∡
Подробнее - на -
Объяснение:
ответ: меньшая диагональ АВСД- это ВД=5
Объяснение: диагонали параллелограмма- это АС и ВД. Так как диагонали параллелограмма при пересечении делятся пополам, найдём середину диагонали АС, точки О по формуле середины отрезка:
Ох=(Ах+Сх)/2=(4-1)/2=3/2=1,5
Ок=(5-7)/2= –2/2= –1
О(1,5; -1)
Теперь найдём координаты точки Д, и составим уравнение используя эту же формулу:
Ох=(Вх+Дх)/2
1,5=(3+Дх)/2
3+Дх=1,5×2
3+Дх=3
Дх=3-3=0
Оу=(Ву+Ду)/2
-1=(-3+Ду)/2
-3+Ду=2×(-1)
-3+Ду= –2
Ду= –2+3=1
Д(0; 1)
Теперь найдём длину каждой диагонали по формуле: АС²=(Ах-Сх)²+(Ау-Су)²=
=(4-(-1))²+(5-(-7))²=(4+1)²+(5+7)²=5²+12²=
=25+144=169; АС=√169=13
ВД²=(3-0)²+(-3-1)²=3²+(-4)²=9+16=25
ВД=√25=5
Говорят, что прямая отсекает от координатных осей треугольник
с координатами (-3;0) (0;0) (0;3)
Это прямоугольный равнобедренный треугольник с катетами 3
S=ab/2=3·3/2=4, 5 кв. ед