Опустим высоту в треугольнике т.к он равнобедренный то высота будет явлчтся и медианой и разделит основание пополам площадь равна основание умножить на высоту и поделить пополам найти высоту теорема пифагора гипотенуза в квадрате равна сумма квадратов катетов 10^2=х^2+5^2 100=25+х^2 х^2=75 х=корень из 75 (корень из 75*10)/2 √75*5(вроде так )
См фото. Дано: цилиндр, АD=10 см, ОК=6 см, S(АВСD)=160 см². Найти S(цилиндра). Решение. АВСD сечение в виде прямоугольника, длина которого равна 10 см по условию. Площадь АВСD равна S=АВ·АD. 10·АВ=160, АВ=160/10=16 см. ΔАОВ - равнобедренный, АО=ВО=R (радиус цилиндра). ОК ⊥ АВ по условию (расстояние от О до АВ равно 6).ОК - медиана Значит ΔАОК прямоугольный, АК=ВК=16/2=8 см. Найдем ОА по теореме Пифагора ОА²=6²+8²=36+64=100, ОА=√100=10 см. Площадь основания S1=πR²=100π=314 см², площадь двух оснований цилиндра равна 314·2=628 см² Определим площадь боковой поверхности цилиндра S2=2πRh=2·3,14·10·10=628 см². Площадь полной поверхности цилиндра равна 628+628=1256 см². ответ: 1256 см².
См фото. Дано: цилиндр, АD=10 см, ОК=6 см, S(АВСD)=160 см². Найти S(цилиндра). Решение. АВСD сечение в виде прямоугольника, длина которого равна 10 см по условию. Площадь АВСD равна S=АВ·АD. 10·АВ=160, АВ=160/10=16 см. ΔАОВ - равнобедренный, АО=ВО=R (радиус цилиндра). ОК ⊥ АВ по условию (расстояние от О до АВ равно 6).ОК - медиана Значит ΔАОК прямоугольный, АК=ВК=16/2=8 см. Найдем ОА по теореме Пифагора ОА²=6²+8²=36+64=100, ОА=√100=10 см. Площадь основания S1=πR²=100π=314 см², площадь двух оснований цилиндра равна 314·2=628 см² Определим площадь боковой поверхности цилиндра S2=2πRh=2·3,14·10·10=628 см². Площадь полной поверхности цилиндра равна 628+628=1256 см². ответ: 1256 см².
найти высоту теорема пифагора гипотенуза в квадрате равна сумма квадратов катетов
10^2=х^2+5^2
100=25+х^2
х^2=75
х=корень из 75
(корень из 75*10)/2
√75*5(вроде так )