1. Если углы 1 и 2 прямые, то прямые a и b перпендикулярны к прямой c и, следовательно, параллельны. 2. Рассмотрим случай, когда углы 1 и 2 не прямые. Из середины O отрезка c проведём перпендикуляр OH к прямой a. На прямой b от точки B отложим отрезок BH1, равный отрезку AH и проведём отрезок OH1. Треугольники OHA и OH1B равны по двум сторонам и углу между ними (AO=BO, AH=BH1, ∠1=∠2), поэтому ∠3=∠4 и ∠5=∠6. Из равенства ∠3=∠4 следует, что точка H1 лежит на продолжении луча OH, т.е. точки H, O, H1 лежат на одной прямой, а из равенства ∠5=∠6 следует, что угол 6 - прямой (так как угол 5 - прямой). Итак, прямые a и b перпендикулярны к прямой HH1, поэтому они параллельны
См. рисунок в приложении Пусть ребро АА₁ образует со сторонами основания АВ и AD угол в 60°. Соединяем точку А₁ с точкой D. В треугольнике АА₁D AA₁=2 м AD=1 м ∠A₁AD=60° По теореме косинусов A₁D²=AA₁²+AD²-2·AA·₁AD·cos60°=4+1-2·2·1(1/2)=3 A₁D=√3 м Треугольник A₁AD- прямоугольный по теореме обратной теореме Пифагора: АА₁²=AD²+A₁D² 2²=1+( √3 )² A₁D⊥AD В основании квадрат, стороны квадрата взаимно перпендикулярны АС⊥AD Отсюда AD⊥ плоскости A₁CD ВС || AD BC ⊥ плоскости A₁CD
ВС⊥A₁C
A₁C перпендикулярна двум пересекающимся прямым ВС и СD плоскости АВСD По признаку перпендикулярности прямой и плоскости А₁С перпендикуляр к плоскости АВСD A₁C - высота призмы A₁C=Н Из прямоугольного треугольника A₁DC: А₁С²=А₁D²-DC²=(√3)²-1=3-1=2 A₁C=Н=√2 м
Если угол при основании 45 градусов, то прямоугольный треугольник, где высота трапеции стороной этого треугольника, а бедро трапеции гипотенузой - равнобедренный, так как второй угол этого прямоугольного треугольника тоже 90-45=45 градусов. Значит, кусочек нижнего основания трапеции, отсекаемый ее высотой равен тоже 3 см. Проведем вторую высоту трапеции, тогда получим, что высоты делят большое основание на три части - две по 3 см и одна - как малое основание 5 см. Следовательно, большое основание имеет размер 3+5+3=11 см.
2. Рассмотрим случай, когда углы 1 и 2 не прямые.
Из середины O отрезка c проведём перпендикуляр OH к прямой a. На прямой b от точки B отложим отрезок BH1, равный отрезку AH и проведём отрезок OH1. Треугольники OHA и OH1B равны по двум сторонам и углу между ними (AO=BO, AH=BH1, ∠1=∠2), поэтому ∠3=∠4 и ∠5=∠6. Из равенства ∠3=∠4 следует, что точка H1 лежит на продолжении луча OH, т.е. точки H, O, H1 лежат на одной прямой, а из равенства ∠5=∠6 следует, что угол 6 - прямой (так как угол 5 - прямой). Итак, прямые a и b перпендикулярны к прямой HH1, поэтому они параллельны