Задача 1.
S=kh
Соответственно k=S:h
60:12=5 - средняя линия трапеции
Задача 2.Площадь трапеции вычисляется по формуле a+b/2*h подставляем известные нам значения в формулу получаем 8*(8+b/2)=72
=128+b=144
b=16
Задача 3.
S=kh
Соответственно k=S:h
63:7=9 - средняя линия трапеции
Задача 4.
12*1+b/2=60
1+b=5
b=4
Задача 5
рассмотрим треугольник, образованный высотой, опущенной на основание и наклонной боковой стороной. Он прямоугольный и равнобедренный. Значит высота трапеции равна разнице между основаниями 9-5=4
площадь равна высоте умноженной на полусумму оснований 4 * (9+5)/2 =28
Внешний угол треугольника равен сумме двух внутренних, не смежных с ним (свойство). Значит Х+(Х+10) = 120°. => X = 55°.
Итак, два внутренних угла треугольника равны 55° и 65°, а третий - по сумме внутренних углов треугольника (или как смежный с внешним углом) равен 180 -110 =70°.
ответ: 55°, 65° и 70°.
3. Внутренний острый угол прямоугольного треугольника равен 180°-109°=71° как смежный с внешним. Второй острый угол равен 90°-71°=19°, так как сумма острых углов прямоугольного треугольника равна 90°.
Высота из прямого угла делит прямоугольный треугольник на два подобных между собой и с основным треугольником. Значит углы, образованные высотой с катетами равны тоже 71° и 19°.
ответ: 71° и 19°