Перпендикулярные они в случае равностороннего треугольника.
АД - диаметр, так как окружность в точке Д касается СД.
Отсюда следует, что треугольник АРД - прямоугольный.
Имеем 2 подобных треугольника: АРД и АВС.
Пусть ВС = х, РД = у.
Составим систему уравнений:
{х/АВ = АР/у,
{х² + РД² = АД² = ВС².
Подставим известные данные.
{(х/(9√10)) = 3/у,
{х² = 9 + у².
Из второго уравнения х = √(9 + у²).
Первое уравнение получится таким:
у*(√(9 + у²)) = 27√10.
Возведём обе части в квадрат и получим биквадратное уравнение:
y^4 + 9y^2 - 27²*10 = 0. Делаем замену: y² = z.
z² + 9z - 7290 = 0.
Находим дискриминант:
D=9^2-4*1*(-7290)=81-4*(-7290)=81-(-4*7290)=81-(-29160)=81+29160=29241;
Дискриминант больше 0, уравнение имеет 2 корня:
z_1=(2root29241-9)/(2*1)=(171-9)/2=162/2=81;
z_2=(-2root29241-9)/(2*1)=(-171-9)/2=-180/2=-90.
Обратная замена (отрицательное значение отбрасываем - из него корень не извлекается).
y = √81 = ±9.
Для длины принимаем положительное значение.
ответ: ДР = у = 9.
Биссектриса угла — это луч, который исходит из его вершины, проходит между его сторонами и делит данный угол пополам. Биссектрисой треугольника называется отрезок биссектрисы угла треугольника, соединяющий вершину с точкой на противолежащей стороне этого треугольника. В прямоугольном треугльнике биссектриса никакими особыми свойтсвами не обладает. Все свойства биссектрис перечислены ниже (чертежи см. ссылку)
Свойства биссектрис треугольника
1. Биссектриса угла — это геометрическое место точек, равноудаленных от сторон этого угла.
2. Биссектриса внутреннего угла треугольника делит противолежащую сторону на отрезки, пропорциональные прилежащим сторонам: x/y=a/b.
3. Точка пересечения биссектрис треугольника является центром окружности, вписанной в этот треугольник.
4. Биссектрисы внутреннего и внешнего углов перпендикулярны.
5. Если биссектриса внешнего угла треугольника пересекает продолжение противолежащей стороны, то ADBD=ACBC.
6. Биссектрисы одного внутреннего и двух внешних углов треугольника пересекаются в одной точке. Эта точка — центр одной из трех вневписанных окружностей этого треугольника.
7. Основания биссектрис двух внутренних и одного внешнего углов треугольника лежат на одной прямой, если биссектриса внешнего угла не параллельна противоположной стороне треугольника.
8. Если биссектрисы внешних углов треугольника не параллельны противоположным сторонам, то их основания лежат на одной прямой.