Доказательство: Проведем высоты ВН и СК. Они равны как расстояния между параллельными прямыми. АВ = CD по условию, ⇒ ΔАВН = ΔDCK по гипотенузе и катету. В равных треугольниках напротив равных сторон лежат равные углы, значит ∠BAD = ∠CDA.
В трапеции сумма углов, прилежащих к боковой стороне, равна 180°. ∠ABC = 180° - ∠BAD ∠DCB = 180° - ∠CDA, значит и ∠ABC = ∠DCB
Поэтому, как только начинаешь читать следы какого-нибудь одного существа, глядишь, а ты уже разбираешься в жизни сотен и тысяч других существ будь то звери птицы или даже растения. интересное это дело - читать следы. но самое интересное в этом то, что сколько бы ты ни читал их, до конца их ни как не прочитаешь.это от того, что следовую книгу пишет сама жизнь, которая идет все время вперед и никогда не останавливается, а следы, как и подобает , хотя и идут за жизнью, но остаются у нее позади. всем интересно читать эту следовую книгу и всем от этого бывает польза. только читать ее нужно строчка за строчкой, как на охоте, надо обязательно глядеть вперед, по направлению следов, тогда не ошибешься и заранее будешь знать, что надо делать в будущем.
Доказательство:
Проведем высоты ВН и СК. Они равны как расстояния между параллельными прямыми.
АВ = CD по условию, ⇒
ΔАВН = ΔDCK по гипотенузе и катету.
В равных треугольниках напротив равных сторон лежат равные углы, значит
∠BAD = ∠CDA.
В трапеции сумма углов, прилежащих к боковой стороне, равна 180°.
∠ABC = 180° - ∠BAD
∠DCB = 180° - ∠CDA,
значит и
∠ABC = ∠DCB