Диагональ основания = 8√2. Рассмотрит треугольник АSO, где О эта середина диагонали основания. SO=16, AO=4√2 тогда по теореме Пифагора АS=√SO²+AO²=√16²+32=12√2
1.Периметр квадрата, вписанного в окружность равен 4 корня из двух * R. Т. е. 64 = 4√2 * R. Тогда R = 12/ √2. Сторона правильного пятиугольника, вписанного в окружность равна R * √ ((5 - √5)/2) = 12/√2 * √(5 - √5)/√2 = 6√(5 - √5). Как-то так. 2.Если дуга 60 градусов, то это 1/6 окружности. Поэтому площадь сектора, ограниченного этой дугой и двумя радиусами, проведенными в концы дуги, равна 1/6 площади круга.А хорда разбивает этот сектор на 2 фигуры - сегмент, площадь которого надо найти, и треугольник, который является равносторонним, поскольку угол при вершине - это центральный угол дуги, равный 60 градусам. Итак, радиус круга равен длине хорды, то есть 4, площадь круга pi*16; площадь сектора pi*16/6. Осталось вычислить площадь равностороннего треугольника со стороной 4, и отнять от площади сектора. Площадь треугольника равна (1/2)*4^2*sin(60) = 4*корень(3);Искомая площадь сегмента pi*16/6 - 4*корень(3)Это примерно 1,44937717929727.
1)х+х+х+5=35 3х=30 х=10 ответ:Боковые стороны =10;Основание=15 2)х+х+4х+4х=360 10х=360 х=36 ответ:два угла=36;другие два=144 3)х+2х+2х=40 5х=40 х=8 ответ:боковые стороны=16;основание=8 4)доказательство: 1.Рассмотрим треуг BMD и теуг BKD: 1)BD-общая 2)BM=BK(т.к. М и К -середины боковых сторон,а теуг АВС -равнобедренный) 3)угол MBD=углуDBK(т.к. BD в равнобедренном треуг является медианой,высотой и биссектрисой) Следовательно,треуг BMD=треуг BKD(по первому признаку равенства треугольников) 5)Доказательство: рассмотрим два треугольника: 1)одна сторона будет общая 2)углы при основании равны 3)углы(вверху этого треугольника)будут равны(т.к. Высота будет являтся и биссектрисой) следовательно,треугольники,которые образовала высота,будет равны! 6)не знаю(точнее не уверенна) 7)а)х+4х+4х-90. 9х=270 х=30 ответ:А=30;В=120;С=30 б)эти стороны равны(т.к. Мы узнали,что треугольник равнобедренный)