Обозначим углы 1,2,3,4, тогда <1+<2+<3=240 <2+<3+<4=260 <3+<4+<1=280, сложим данные равенства 2•(<1+<2+<3+<4)+<3=780, сумма углов выпуклого четырёхугольника равна <1+<2+<3+<4=360, тогда 2•360+<3=780, <3=60. Из второго уравнения вычтем первое, а из третьего второе, <4-<1=20,<4=<1+20 <1-<2=20,<2=<1-20 <3=60, тогда <1+<2+<3+<4=<1+(<1-20)+60+(<1+20)=3<1+60=360, <1=100, тогда <4=120, <2=80 ответ: 100,80,60,120 а) периметр это сумма длин всех сторон, у параллелограмма они попарно равны, тогда сумма смежных сторон равна 12. Пусть меньшая сторона равна x, тогда вторая x+2, x+x+2=12, x=5, x+2=7 Стороны равны 5,5,7,7 б) x+3x=12, x=3, 3x=9 Стороны равны 3,3,9,9 в) пусть стороны равны а и b, тогда а+а+b=17, 2•(a++b)=24, a=12-b a+a+b=2•a+b=2•(12-b)+b=24-b=17, b=7,a=12-7=5 Стороны равны 5,5,7,7
P = 2x + y (x - боковые стороны, y - основание) y = 96, P = 196 - дано в условии, найдем x 2X=P-y x= (P-y)/2 x=50
итого: x = 50, y = 96 нам не хватает высоты, для нахождения площади. Проведем высоту и рассмотрим половинку этого равнобедренного треугольника, где гипотенуза - x, а прилежащий катет - y/2 (т.к высота в равнобедренном треугольника - медиана) по теореме Пифагора h = √(x^2 - (y/2)^2) h = √(50^2 - 48^2) = √196 = 14
Площадь треугольника: половина основания на высоту, основание - y, высота - h тогда: S=1/2*hy = 96*14/2 = 672. ответ: 672
площадь равна (6*8)/2= 24