Надо(( abcd – прямоугольник. отрезок ae перпендикулярен к плоскости abc. be = 15, ce = 24, de = 20. докажите, что треугольник cde прямоугольный, и найдите ae.
1) И прямая, и плоскость не имеют строгих определений в геометрии, а определяются через их свойства. У прямой нет "ширины" и "высоты", однако она простирается бесконечно в обе стороны. В строгом смысле слова, прямая - это одномерный аналог пространства. Плоскость имеет уже два бесконечных измерения - "длину" и "ширину", это двумерный аналог пространства.
2) а) нет, не могут. Плоскости либо параллельны (и тогда они не имеют общих точек), либо пересекаются по прямой (и тогда имеют бесконечное множество общих точек), либо совпадают (и тоже имеют бесконечное множество общих точек) б) нет в) да
Cечение, проходящее через вершины А,С и D1 призмы пройдет и через вершину F1, так как плоскость, пересекающая две параллельные плоскости (плоскости оснований), пересекает их по параллельным прямым, то есть по прямым АС и D1F1. В сечении имеем прямоугольник со сторонами АС и СD1 (так как грани АА1F1F и CC1D1D параллельны между собой и перпендикулярны плоскостям оснований и, следовательно, углы сечения равны 90⁰). Причем отрезок СD1 (гипотенуза прямоугольного треугольника) по Пифагору равна 2√2. Половину стороны АС найдем из прямоугольного треугольника АВН, в котором <ABH=60°, а <BAH=30° (так как <АВС - внутренний угол правильного шестиугольника и равен 120°). 0,5*АС=√(4-1)=√3. АС=2√3. Площадь сечения равна 2√2*2√3=4√6. ответ: S=4√6.