Проведем перпендикуляры BS1 и MS2. (M - центр AB) Обозначим плоскость треугольника ABS1-желтым цветом. Плоскость β голубым. Поскольку прямая AB лежит в плоскости желтого треугольника,то все ее точки лежат в этой плоскости,а значит точка M тоже лежит в этой плоскости.(аксиома 2). Мы можем интуитивно заявить что отрезок MS2 лежит в плоскости этого треугольника (Да это так ,но этот факт требует доказательства) Итак подтвердим наше предположение: Прямые MS2 || BS1 параллельны, как два перпендикуляра к одной плоскости. А поскольку параллельные прямые всегда лежат в одной плоскости,то прямые MS2 и BS1 лежат в одной плоскости. То есть точки S2,M,B,S1 лежат в одной плоскости. Мы знаем что точки M,B,S1 лежат в плоскости желтого треугольника. То поскольку через 3 данные точки можно провести плоскость и при том только одну. То они не могут лежат в другой плоскости отличной от плоскости желтого треугольника,иначе это противоречило бы первому постулату. А поскольку вместе с ними в одной плоскости весит и точка S2,то она тоже лежит в плоскости треугольника. То и прямая MS2 лежит в плоскости этого треугольника. Ну теперь все очевидно :MS2 -средняя линия треугольника ABS1,откуда: MS2=BS1/2=12/2=6 см ответ:6 cм
АВ = Рabcd : 4 = 12 : 4 = 3 см ВВ₁ и DD₁ - медианы, значит AD₁ = D₁B = AB₁ = B₁D = 3/2 см
ΔABD равнобедренный, поэтому ∠ABD = ∠ADB, BD₁ = DB₁, BD - общая сторона для ΔDD₁B и ΔBB₁D, значит эти треугольники равны по двум сторонам и углу между ними, ⇒ BB₁ = DD₁.
Медианы точкой пересечения делятся в отношении 2 : 1, считая от вершины. Обозначим OD₁ = OB₁ = x, тогда OD = OB = 2x. ΔOBD равнобедренный, значит ∠OBD = ∠ODB = 40°. ∠D₁OB = ∠OBD + ∠ODB = 80° как внешний угол ΔDOB.
Если необходимо числовое значение, а не выражение, можно взять значение cos 80° по таблице, тогда получится: cos 80° ≈ 0,1736 BB₁ = 9 / (2√(5 - 4cos80°)) ≈ 2,2
1) Сторону правильного n-угольника можно вычислить по формуле a=2R*sin 180/n, где n - количество сторон. Однако, R мы не знаем. Его можно вычислить по другой формуле - R=r/cos 180/n. Подставим сюда известные числовые значения: R=3/cos 18=3/0.95=3.15 (см). Найдем сторону фигуры: a=2*3.15*sin 180/n=2*3.15*0.3=1.89 (см) ответ: 1.89 см. 2) Найдем R: R = r/cos 180/n=5/√3/2=10√3/3 (см) Длина стороны равна R, следовательно a=R=10√3/3, значит, P = 6a=10√3/3*6=20√3 (cм) или 34.64 см. ответ: 20√3 см или 34.64 см. 3) Радиус описанной около 6-угольника окружности = длине стороны, следовательно R = 5√3 см. Для треугольника эта же окружность является вписанной, т.е. для треугольника r=5√3. В свою очередь, R=2r=2*5√3=10√3 (см). Сторону правильного треугольника можно вычислить по формуле a=R√3=10√3*√3=10*3=30 (см). ответ: 30 см.
Обозначим плоскость треугольника ABS1-желтым цветом. Плоскость β голубым.
Поскольку прямая AB лежит в плоскости желтого треугольника,то все ее точки лежат в этой плоскости,а значит точка M тоже лежит в этой плоскости.(аксиома 2).
Мы можем интуитивно заявить что отрезок MS2 лежит в плоскости этого треугольника (Да это так ,но этот факт требует доказательства) Итак подтвердим наше предположение:
Прямые MS2 || BS1 параллельны, как два перпендикуляра к одной плоскости. А поскольку параллельные прямые всегда лежат в одной плоскости,то прямые MS2 и BS1 лежат в одной плоскости. То есть точки S2,M,B,S1 лежат в одной плоскости. Мы знаем что точки M,B,S1 лежат в плоскости желтого треугольника. То поскольку через 3 данные точки можно провести плоскость и при том только одну. То они не могут лежат в другой плоскости отличной от плоскости желтого треугольника,иначе это противоречило бы первому постулату. А поскольку вместе с ними в одной плоскости весит и точка S2,то она тоже лежит в плоскости треугольника. То и прямая MS2 лежит в плоскости этого треугольника.
Ну теперь все очевидно :MS2 -средняя линия треугольника ABS1,откуда:
MS2=BS1/2=12/2=6 см
ответ:6 cм