Дано: угол ВАС = 40 град.
АD - ,биссектриса
АВ = АС = AD
Найти угол ВDC.
1) Достроим отрезки ВD и СD так, чтобы получились треугольники ABD и ACD.
2) Поскольку АD - биссектриса (по условию), то угол BAD = углу CAD = 20 градусам.
3) Треугольники BAD и CAD равны по второму признаку равенства треугольников, так как АD - общая сторона, стороны АВ и АС равны (по условию), и углы BAD и CAD равны (по второму пункту моего решения)
4) Треугольник BAD - равнобедренный, так как AB = AD (по условию). Аналогично с треугольником CAD.
5) Так как по свойству равнобедренных треугольников углы при основании равнобедренного треугольника равны, а сумма всех углов треугольника равна 180 градусам, составляем уравнение, где у - неизвестный угол.
2у + 20 = 180
у = 80
Аналогично с треугольником CAD
6) Так как угол BDA = 80 градусам, и угол CDA = 80 градусам (по 5 пункту моего решения), то по аксиоме о сумме градусных мер угол BDC = BDA + CDA, то есть
BDC = 80 + 80 = 160.
ответ угол BDC = 160 градусам. Ч.Т.Н.
Медианы в точке их пересечения делятся в соотношении 2/1 (считая от вершины угла)
Медиана в правильном треугольнике=высоте=биссектрисе
Катет прямоугольного треугольника, противолежащий углу 30 градусов, равен половине гипотенузы.
Отсюда - высота треугольника = R +1/2R =1,5R = 9
Если принять катет, противолежащий половине угла треугольника (30 градусов) за х
то сторона треугольника будет 2х
По формуле Пифагора (2х) ² = х² + 9²
4х² = х²+81
3х² = 81
х² = 27
х= 3√3
2х=6√3
Итак, известна высота 9, известна сторона треугольника 6√3 .
Площадь треугольника равна половине произведения его высоты на основание.
Считайте, это уже просто сделать
3 года назад