1 тому ВМ медіана, то АМ = МС. ВМ загальна.
Одна з формул площі тр: половина твори сторін на синус кута між ними.
Площа трикутника АВМ = АМ * ВМ * sinАМВ (1)
Площа трикутника ВМС = СМ * ВМ * sinСМВ (2)
кут АМВ + кут СМВ = 180
АМВ = 180 - СМВ => sin (AMB) = sin (180-СMВ) => за формулою приведення => sin (180-СМВ) = sin (СMВ)
т.к АМ = СМ, ВМ - загальна і sin (АМВ) = sin (СMВ) вираження (1) і (2) рівні
2 * АМ * ВМ * sinАМВ = 24
АМ * ВМ * sinАМВ = 12
площа АМВ = 12 см ^ 2
2 Оскільки AB = BC, то треуг ABC рівнобедрений, а значить висота BD проведена до основи є медіаною і бісссектрісой => AD = DC & кути ABD = DBC
У прямокутному трикутнику ADB по теоремі пифагора BD = 12
Площа АВС дорівнює половині твори підстави на висоту 0,5 * 18 * 12 = 108
Объяснение:
ОD - биссектриса <AOB
OF - биссектриса <BOC
<AOD : <FOC =2 : 7
Найти <AOD и <FOC.
Решение:
2 <AOD + 2<FOC=180°
<AOD+<FOC=90°
<AOD=2x
<FOC=7x
2x+7x=90°
9x=90°
x=10°
<AOD=2*10°=20°
<FOC=7*10°=70°
ответ: <AOD=20°
<FOC=70°
2. Дано: <EAC=<DCA
DF=EF
Доказать, что ΔABC-равнобедренный.
Док-во:
1. Так как <EAC=<DCA (по условию), то ΔAFC- равнобедренный. Отсюда
AF=FC.
Так как DC=DF+FC и AE=AF+EF, то DC=AE.
2. ΔDCA=ΔEAC (по 1-ому признаку равенства Δ: DC=EA, <EAC=<DCA (по условию); AC-общая сторона).
Из равенства Δ следует, что <DAC=<ECA.
<DAC=<BAC
<ECA=<BCA.
Отсюда <BAC=<BCA.
Значит ΔABC-равнобедренный.
Что и требовалось доказать.