Найдем S(AOB):
S(AOD):S(BOC) =16:9=k2
k=4/3
k=4/3=AO/OC
S(AOB)=0,5•BL•AO
S(BOC)=0,5•BL•OC
S(AOB)/S(BOC) =(0,5•BL•AO)/(0,5•BL•OC)=AO/OC=4/3
S(AOB)/S(BOC) =4/3
S(AOB)=4/3•S(BOC)=4/3•9=12
S(ABCD)=12+12+16+9=49
Объяснение:
Площади ∆AOB и ∆DOC равны. Так как площади ∆ABD и ∆ACD равны. У них общее основание и высоты равны.
S(AOB)=S(ABD)-S(AOD)=S(ACD)-S(AOD)=S(COD)
S(AOD)≠S(BOC)
Следовательно, у этих треугольников AD и BC основания трапеции.
∆AOD ~ ∆ BOC (углы BOC=AOD как вертикальные), а
стороны пропорциональны их отношение площадей равно квадрату коэффициента подобия k.
разделим решение на 2 части: анализ и нахождение величин
1) анализ
обозначим боковые стороны и меньшее основание за x
длина той части высоты, которая ближе к меньшему основанию - м (далее - во)
длина той части высоты, которая ближе к большему основанию - б (далее - он)
пусть трапеция - abcd. bc - меньшее основание, аb и cd - боковые стороны.
проведём высоту bh, диагональ - ас. точка пересечения - о
треугольники овс и она - подобные (оба прямоугольные, есть вертикальные углы аон=вос)
тогда ан = вс* (он/во) = х* (б/м)
площадь трапеции: s = bh*(bc+ad)/2 = bh*(bc+ah) = 18*x*(1+б/м)
итак, осталось найти х.
поясню, почему требуется обозначения б и м. есть 2 решения (в зависимости от того, какие длины мы присвоим отрезкам он и во) . поэтому будут 2 значения б/м:
б/м = 10/8 или б/м = 8/10
2) нахождение величин
обозначим угол всн = t (дальше легче писать)
cos (t) = ah/ab = (x*(б/м)) /x = б/м.
sin (t) = вн/ав = 18/х
cos^2(t) + sin^2(t) = 1
(б/м) ^2 + 324/x^2 = 1
324/x^2 = 1 - (б/м) ^2
так как 324/x^2 > 0, то приходим, что б/м = 8/10. (т. е. второго решения больше нет) .
итого: 324/x^2 = 1 - (8/10)^2 = 0,36
x = 30
s = 18*x*(1+б/м) = 18*30*(1+ 8/10) = 972
Если в параллелограмме все углы равны, то один угол будет равен 360:4=90
Пусть сторона параллелограмма равна а.
Площадь параллелограмма равна произведению смежных сторон на синус угла между ними (sin90=1): а^2* sin 90=a^2