Дано:
АВСД- пар-м.
ВК- биссектриса угла В
АК - АД = 1 см
Р(периметр) = 40 см.
Найти:
Стороны пар-ма
1) Рассмотрим треугольник АВК - он равнобедренный (по свойству о биссектрисе, проведённой в параллелограмме)
в нём:
АК = АВ (т.к боковые стороны)
2) Пусть КД - Х см. , тогда АК - Х=1 , а т.к АК = АВ (по выше доказанному), следовательно АВ - тоже Х+1, а т.к в параллелограмме все стороны попарено параллельны, то ВС - 2Х+1, а СД - Х +1, а т.к сумма всех сторон равна 40 см. (по условию), то составим уравнение:
Х + Х + 1 + Х + 1 + 2Х + 1 + Х + 1 = 40
Дальь ше решаешь уравнение и находишь оставшиеся стороны алгебрачиски. Всё, и ответ будет готов.
Дано:
АВСД- пар-м.
ВК- биссектриса угла В
АК - АД = 1 см
Р(периметр) = 40 см.
Найти:
Стороны пар-ма
1) Рассмотрим треугольник АВК - он равнобедренный (по свойству о биссектрисе, проведённой в параллелограмме)
в нём:
АК = АВ (т.к боковые стороны)
2) Пусть КД - Х см. , тогда АК - Х=1 , а т.к АК = АВ (по выше доказанному), следовательно АВ - тоже Х+1, а т.к в параллелограмме все стороны попарено параллельны, то ВС - 2Х+1, а СД - Х +1, а т.к сумма всех сторон равна 40 см. (по условию), то составим уравнение:
Х + Х + 1 + Х + 1 + 2Х + 1 + Х + 1 = 40
Дальь ше решаешь уравнение и находишь оставшиеся стороны алгебрачиски. Всё, и ответ будет готов.
Трапеция АВСД. Боковые стороны АВ и СД пересекаются в точке О, расстояния от О до концов меньшего основания ВС - это ВО и СО.
АВ=2,4, ВС=6, СД=2,6, АД=9
Рассмотрим треугольники AОD и BОC - они подобны по 1 признаку (по 2 углам): ∠О — общий и ∠ DAО=∠CBО (как соответственные углы при BC ∥ AD и секущей AО).
Из подобия треугольников следует пропорциональность соответствующих сторон:
АО/ВО=ДО/СО=АД/ВС=9/6=1,5
АО=АВ+ВО=2,4+ВО
ДО=СД+СО=2,6+СО
ВО=АО/1,5=(2,4+ВО)/1,5
0,5ВО=2,4, ВО=4,8
СО=ДО/1,5=(2,6+СО)/1,5
0,5СО=2,6, СО=5,2
ответ: 4,8 и 5,2