Даны две точки A и B, имеющие конкретные координаты.
Точка М имеет переменные координаты х и у: М(х; у).
Если обе части заданного выражения BM²- AM² = 2AB² разделить на 2AB², то получим уравнение:
(BM²/2AB²) - (AM²/2AB²) = 1.
Если в этом уравнении разнести координаты по х и по у, то получится уравнение гиперболы.
Выразим отрезки АМ, ВМ и АВ через координаты.
АМ = √((хМ - хА)² + (уМ - уА)²).
ВМ = √((хМ - хВ)² + (уМ - уВ)²).
АВ = √((хВ - хА)² + (уВ - уА)²).
Заданное множество точек соответствует уравнению:
((хМ - хА)² + (уМ - уА)²) - ((хМ - хВ)² + (уМ - уВ)²) =
= 2*((хВ - хА)² + (уВ - уА)²).
Если бы были известны координаты точек, то можно было бы определить уравнение для конкретных условий.
По условию задачи, диагональ трапеции разбила её на два треугольника, у которых средние линии равны 5 см и 9 см. Это понятно.
Дальше:
Поскольку средняя линия равна половине основания, то, соответственно, основания этих треугольников равны, поэтому приведу следующие вычисления:
5*2=10 см.
9*2=18 см.
Итак, основания этих треугольников являются основаниями самой трапеции, а это и значит, что основания трапеции будут являться 10 см. и 18 см.
В данном случае биссектрисы являются медианами и высотами.
точка пересечения делит их в отношении 2:1.
R =132/(2+1)=44;