Формула объема параллелепипеда V=S•h, где Ѕ - площадь основания параллелепипеда, h - его высота. В прямом параллелепипеде боковые ребра перпендикулярны основанию, поэтому высота равна его боковому ребру.
Диагональ основания делит его на два равных треугольника, площадь каждого, найденная по формуле Герона, равна 36 ед. площади. Площадь основания 2•36=72.
Площадь всей поверхности состоит из суммы площади боковой поверхности и площади двух оснований. Площадь боковой поверхности находим вычитанием из площади полной поверхности площади двух оснований. Ѕ(бок)=334-2•72=190.
S(бок)=Р•h. Периметр основания Р=2•(10+9)=38 ⇒ h=190:38=5 Искомый объём V=72•5=360 ( ед. объема).
c=√a^2+b^2-2abcos£
где £=1 для наименьшего угла и £=89 для наибольшего угла
а=12
b=8
далее решение не составит труда
по окончании расчётов необходимо сложить c при расчёте для наименьшего угла и при расчёте для наибольшего угла. в итоге получите ответ