Пусть BB' медиана стороны AC, тогда B'C=B'A=CA/2, откуда CA=2*B'C(1)По свойству медиан треугольника имеем: OB/OB' =2/1, или OB=2*OB', откуда OB'=OB/2 =10/2=5 где OB=10 по условию Тогда BB'=OB+OB'=10+5=15Из прямоугольного треугольника B'CB по теореме Пифагора найдем B'C = корень[(BB'^2)-(BC^2)]=корень[225-81]=корень[144]=12 где BC=9 по условию Подставим в (1) вместо B'C его значение, найдем CA: CA=2*12=24И, наконец, найдем искомую площадь S треугольника ABC: S=CA*BC/2=24*9/2=12*9=108
AC однозначно не находится. 1 случай. B - острый угол⇒cos B=0,6, ясно, что наш Δ - "удвоенный египетский". Если есть сомнения, давайте применим теорему косинусов: AC^2=AB^2+BC^2-2AC·BC·cos B=36+100-2·6·10·0,6=64; AC=8, по теореме, обратной теореме Пифагора треугольник прямоугольный. sin A=sin 90°=1
2 случай. B - тупой угол, cos B= - 0,6; AC^2=AB^2+BC^2-2AC·BC·cos B=36+100+2·6·10·0,6=208; AC=√208=4√13
Синус угла A найдем по теореме синусов: BC/sin A=AC/sin B; sin A=10·0,8/(4√13)=2√13/13
2. Опускаем ⊥ AE и DF на BC; EF=AD=7; BE=CF=(23-7)/2=8. Из прямоугольного ΔABE находим AE=6 - высота трапеции. S=полусумма оснований умножить на высоту=90.
-7 и 0 = 7