Радиус вписанной окружности равен половине высоты этой трапеции (высота равна диаметру. )
В трапецию можно вписать окружность, если суммы ее противоположных сторон равны.
8+18=26 - сумма боковых сторон
26:2=13 - боковая сторона.
Опустим из тупого угла высоту на большее основание.
Получим прямоугольный треугольник с гипотенузой 13, катетом, равным полуразности оснований и равным (18-8):2, и вторым катетом - высотой трапеции.
По теореме Пифагора диаметр окружности равен
√(13²-5²)=12см
Радиус равен половине диаметра
12:2=6 см
ответ: радиус вписанной окружности в трапцию равен 6 см
Получим треугольник с углом 30° у катета, являющегося половиной стороны треугольника.
Тогда сторона равна a = 2*R*cos 30 = 2*3*(√3/2) = 3√3 = 5,196152.