Треугольники АМС и ABN подобны по первому признаку подобия: два угла одного треугольника соответственно равны двум углам другого: - углы BNC и АМС прямые, т.к. АМ и BN - высоты; - углы АСМ и BAN равны как углы при основании равнобедренного треугольника АВС.
1. 1) 50: 2 = 25 (- полусумма сторон) 2) пусть х + 5 - большая сторона, тогда х - наименьшая. полусумма равна 25, имеем уравнение: х+х+5=25, отсюда х = 10. 3) итак, наименьшие стороны равны по 10 см, а наибольшие по 15 см.2.30 градусов, в ромбе все стороны равны, и если сторона равна диагонали, то образуется равносторонний треугольник у которого все внутренние углы равны 60 градусов, вторая диагональ есть биссектриса внутреннего угла - делит его пополам3. 0,5*ac=корень (ad в квадрате + (0,5*bd) в квадрате) ac = 2*корень (6 в квадрате + 2,5 в квадрате) = 2*6,5 = 13
Если есть проблемы с отображением, смотрите снимок ответа, который приложен к нему. ==== Смотрите рисунок, приложенный к ответу. Рассмотрим . Из условия ясно, что он — прямоугольный (так как ). — гипотенуза, — искомый катет, Тангенс острого угла прямоугольного треугольника есть отношение противолежащего катета к прилежащему катету. То есть: Отсюда: Как видим, оба катета неизвестны. Но есть выход — теорема Пифагора. Покажем теорему Пифагора для данного треугольника: Как мы выяснили чуть выше . Заменяем и получаем: Немного поколдуем: Отсюда найдем : Теперь напомню зачем нам нужно было Подставляем вместо новую подстановку: Отлично. В формуле для нахождения ответа не осталось ни одной неизвестной. Подставляем то, что есть в формуле. Из условия: Найдем, наконец, Это ответ.
- углы BNC и АМС прямые, т.к. АМ и BN - высоты;
- углы АСМ и BAN равны как углы при основании равнобедренного треугольника АВС.