М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
YummyGirl
YummyGirl
28.03.2020 16:52 •  Геометрия

Треугольник abc - равнобедренный ab=bc, ad=de, угол c=70 градусов, угол eac=35 градусов. докажите, что de//ac

👇
Ответ:
yanazaharova96
yanazaharova96
28.03.2020
Где точки Д и Е не понял.
4,4(82 оценок)
Открыть все ответы
Ответ:
ilyavladimirov1
ilyavladimirov1
28.03.2020

Объяснение:

Свойства правильного (равностороннего) треугольника: "В равностороннем треугольнике все углы равны между собой и равны 60°. В равностороннем треугольнике высоты являются и медианами, и биссектрисами. В равностороннем треугольнике точки пересечения высот, биссектрис, медиан и серединных перпендикуляров совпадают. Точка пересечения серединных перпендикуляров - центр описанной  окружности.

Определение: "Центроид треугольника (также барицентр треугольника и центр тяжести треугольника) — точка пересечения медиан в треугольнике".

Следовательно, векторы ОА, ОВ и ОС - радиусы описанной около правильного треугольника окружности.

ОА=ОВ=ОС = R.  

Сумма векторов ОВ + ОС = OD (по правилу сложения).

<BOC = 120°,  <OBD = 60°.

|OD| = √(OA²+OC² - 2*OA*OCCos60°) или

|OD| = √(R²+R² - 2*R²*1/2) = R.

<BOD = 60°, <AOB = 120°.  <BOD + <AOB = 180°.

Следовательно, AOD - развернутый угол, векторы ОА и OD равны по модулю и направлены в противоположные стороны. Сумма таких векторов равна нулю, значит сумма векторов ОА+ОВ+ОС = 0, что и требовалось доказать.


Докажите,что сумма векторов, соединяющих центр тяжести с вершинами правильного треугольника,равна ну
4,6(18 оценок)
Ответ:
isokova01
isokova01
28.03.2020
Пусть b=24; a = 12; О - центр основания, МО - высота пирамиды, сечение пересекает MD в точке Q, МС в точке Р, МО в точке К. Надо найти площадь четырехугольника BGQP. Плоскость сечения II АС, поэтому GP II AC, откуда MG/GA = МК/КО = MP/PC = 2/1;то есть 1. GP = (2/3)*AC = a*2√2/3; (из подобия треугольников AMC и GMP)2. К - точка пересечения медиан треугольника MDB. То есть MQ = DQ;И еще, поскольку у квадрата диагонали перпендикулярны, AC перпендикулярно плоскости треугольника MDB, откуда следует, что GP перпендикулярно BQ, то есть площадь S четырехугольника BGQP равна S = BQ*GP/2;Остается найти медиану m = BQ равнобедренно треугольника MDB с боковыми сторонами MD = MB = b = 24; и основанием BD = a√2; (a = 12);(2*m)^2 = 2(a√2)^2 + b^2;m = (1/2)*√(4*a^2 + b^2);S = (1/2)*(a*2√2/3)*(1/2)*√(4*a^2 + b^2) = (1/6)*a*√(8*a^2 + 2*b^2);ну и надо подставить числа.если b = 2*a, то S = (2/3)*a^2 = 96;
4,4(16 оценок)
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ