Площадь треугольника равна полупроизведению катетов: 0,5*a*b=128*sqrt(3) По скольку треугольник прямоугольный, а один угол равен 30, то другой равен 60. Чтобы выразить a через b используем тангенс: tg30=a/b
Подставим это в первое уравнение вместо b: 0,5*a*a*sqrt(3)=128 a^2=256 a=16
больше половины отрезка. получаем две точки их пересечения. 3. через эти точки проводим прямую до пересечения с первой окружностью. И соединяем эту точку с левой точкой нашей стороны. Это и будет поворот на 60 нашей стороны. 4.берем вторую сторону , измеряем ее длину из одной точки и измеряем расстояние от второго конца нашей первой стороны, которую мы уже повернули до дальнего края второй стороны. 5.от левого конца повернутой стороны строим две окружности измеренных радиусов и в точке их пересечения получаем второй конец второй стороны. 6. И т. д. с каждой стороной.
Допустим у нас есть два равных треугольника АВС и А1В1С1, АМ и А1М1 - их соответственные медианы, проведенные к сторонам ВС и В1С1 соответственно тогда ВМ = МС, В1М1 = М1С1 (АМ и А1М1 - медианы), а раз ВС = В1С1, то все педидущие четыре отрезка равны: ВМ = МС = В1М1 = М1С1 далее уголВ = углуВ1(соответствующие углы равных треугольников) АВ = А1В1 (соответствующие стороны равных треугольников)
на основании выше изложенного делаем вывод, что тр.АВМ = тр.А1В1М1(по двум сторонам и углу между ними) а уже на основании равенства треугольников АВМ и А1В1М1 делаем вывод о равенстве наших медиан АМ и А1М1, что и требовалось доказать
По скольку треугольник прямоугольный, а один угол равен 30, то другой равен 60.
Чтобы выразить a через b используем тангенс: tg30=a/b
Подставим это в первое уравнение вместо b: 0,5*a*a*sqrt(3)=128
a^2=256
a=16