Обозначим треугольник АВС, угол С = 90 град., АС = 8 см, ВС = 6 см. Меньшая высота в треугольнике проведена к большей стороне. Самая большая сторона в прямоугольном треугольнике является гипотенузой. Найдем ее по теореме Пифагора. АВ = V(АС^2 + ВС^2) = V(8^2 + 6^2) = V(100) = 10 см. Из угла С проведем к гипотенузе высоту СD. Рассмотрим два треугольника : АВС и АDС. Они являются подобными, так как угол А у них общий и оба они прямоугольные. Из подобия запишем : ВС/АВ = СD/АС Отсюда СD = ВС*АС/АВ = 6*8/10 = 4,8 см.
Дано:
треугольник АВС,
угол В = угол А + 40,
угол С = 5 * угол А,
Найти градусные меры угла А, угла В, угла С - ?
Рассмотрим треугольник АВС. Нам известно, что сумма градусных мер любого треугольника равна 180 градусов. Пусть угол А = х градусов, угол В = х + 40 градусов, а угол С = 5 * х градусов. Составляем уравнение:
х + х + 40 + 5 * х = 180;
х + х + 5 * х = 180 - 40;
х + х + 5 * х = 140;
х * (1 + 1 + 5) = 140:
х * 7 = 140;
х = 140 : 7;
х = 20 градусов - угол А;
угол В = 20 + 40 = 60 (градусов);
угол С = 5 * 20 = 100 (градусов).
ответ: 20 градусов; 60 градусов; 100 градусов.
прямоугольник.
если высота=диаметру, то квадрат.
2. цилиндр наклонный, то параллелограмм или ромб