Опустив высоту на большую сторону, мы получили два прямоугольных треугольника. Углы при основании равнобедренного равны по 30 градусов (180-120 = 60, 60:2 = 30). а катет, лежащий против угла 30 градусов, равен половине гипотенузы. по условию этот катет равен 7, значит гипотенуза 14 см. Найдем неизвестный катет по теореме Пифагора( следствию): = 196-49=147. Корень из 147 = 7 корней из 3 см. умножим на 2, чтобы получить основание равнобедренного треугольника и получим 14 корней из 3 - это и будет большая сторона равнобедренного треугольника
Опустив высоту на большую сторону, мы получили два прямоугольных треугольника. Углы при основании равнобедренного равны по 30 градусов (180-120 = 60, 60:2 = 30). а катет, лежащий против угла 30 градусов, равен половине гипотенузы. по условию этот катет равен 7, значит гипотенуза 14 см. Найдем неизвестный катет по теореме Пифагора( следствию): = 196-49=147. Корень из 147 = 7 корней из 3 см. умножим на 2, чтобы получить основание равнобедренного треугольника и получим 14 корней из 3 - это и будет большая сторона равнобедренного треугольника
пусть дана трапеция ABCD с равными боковыми сторонами AD = BC. сумма ее оснований AB + DC = 17 см, высота AH = 3,5 см
угол ADH = 45 градусам по условию, угол AHD = 90 градусов, так как AH - высота = >
угол DAH = 180 - 90 - 45 = 45 градусов => треугольник AHD - равнобедренный, DH = AH = 3,5 см.
проведем еще одну высоту BL.
угол BCL = 45 градусам по условию, угол BLC = 90 градусов, так как BL - высота =>
угол LBC = 180 - 90 - 45 = 45 градусов => треугольник BCL - равнобедренный, LC = BL = 3,5 см
AB || DC, AH || BL = > ABLH - паралеллограмм => AB = HL
пусть AB = HL = x. тогда:
AB + DC = AB + DH + HL + LC = 2x + 7 = 17
2x = 10
x = 5
AB = 5 см.
DC = DH + HL + LC = 3,5 + 5 + 3,5 = 12 см.
ответ: AB = 5 см; DC = 12 см