<ADB=<ACB, т.к. опираются на одну хорду AB и равны 46° по условию. <BCX=23°по условию же, следовательно <ACX=23°. Следовательно CX - биссектриса. AX - биссектриса по условию, следовательно точка Х является точкой пересечения биссектрис. <ABC = 72°, т.к. противоположные углы вписанного четырехугольника в сумме равны 180°, а <BDC = 62° по условию, отсюда <ADC=<ADB+<BDC=46°+62°=108°. Следовательно <ABC=180°-<ADC(108°)=72°. А угол <CBX является половиной <ABC (из свойства биссектрисы и т.к. BX является таковой. Отсюда <CBX=36°.
ответ: 36°
Даны точка M (3,-2,1) и векторы l(1,-2,4) и m(-3,0,4)
Для начала находим координаты вектора, перпендикулярного искомой плоскости. Таковым является векторное произведение заданных векторов:
i j k | i j
1 -2 4 | 1 -2
-3 0 4 | -3 0 = -8i - 12j + 0i - 4j -0i - 6k = -8i - 16j - 6k.
Координаты (-8; -16; -6). Вспомним, что в уравнении плоскости Ax+By+Cz+D=0 вектор (A;B;C) является вектором, перпендикулярной заданной плоскости. Поэтому искомое уравнение имеет вид -8x - 16y - 6z + D = 0 .
Остается найти свободный коэффициент D - его найдем из условия, что плоскость проходит через точку M(3; -2; 1). Подставляем значения в уравнение:
-8*3-16*(-2)-6*1+D = 0
D = 24-32+6 = -2
Искомое уравнение -8x-16y-6z-2=0.
Можно сократить на -2: 4x+8y+3z+1=0.
длина стороны а= 15 см радиус описанной окружности R=5√3сторона (а) и ДВА радиуса (R) образуют равнобедренный треугольник - где основание (а) и боковые стороны (R)радиус вписанной окружности ( r ) в этом треугольнике - это высота тогда по теореме Пифагора r^2 = R^2 - (a/2)^2r = √ ((5√3)^2 - (15/2)^2 ) =5√3/2
ответ: 5√3/2
Номер 2.
Обозначим стороны квадрата и шестиугольника а4 и а6 соответственно, а радиус окружности R.
Тогда
a4=2R*sin(180/4)=2R*sin45= sqrt(2)*R
a6=2R*tg(180/6)= 2R*tg30= sqrt(3)*2*R/3a6/a4= sqrt(6)/3