(В решении будем использовать теорему Пифагора в прямоугольных треугольниках.)
По условию дано, что ОМ + ОР = 15 см. Пусть ОМ = х , тогда ОР = 15 - х.
Рассмотрим треугольники КОМ и КОР. Данные треугольники являются прямоугольными, так как КО - перпендикуляр к плоскости альфа.
По теореме Пифагора выразим общий катет (KO) треугольников КОМ и КОР:
1. В треугольнике КОМ:
КО^2 = 15^2 - OM^2
KO^2 = 225 - x^2
2. В треугольнике КОР:
КО^2 = (10sqrt3)^2 - OP^2
KO^2 = 100 * 3 - (15 - x)^2
KO^2 = 300 - (15 - x)^2
Из двух полученных значений КО^2 следует, что:
KO^2 = 225 - x^2 = 300 - (15 - x)^2
или
225 - x^2 = 300 - (15 - x)^2
Тогда x = 5 => OM = 5 (см)
Из треугольника КОМ выразима КО по теореме Пифагора, т.е.:
КО = sqrt (225 – 25) = sqrt 200 = sqrt (100 * 2) = 10 sqrt 2
Далее, если нужно, выражаем это значение более подробно.
Для этого находим значение квадратного корня из двух и решаем:
Sqrt 2 ~ 1, 414 ~ 1, 4 => KO ~ 10 * 1,4 => KO ~ 14 (см)
ответ: 10 sqrt 2 (или 14 см).
Решение :
1. Найдём середину отрезка АС:
6 см : 2 = 3 см - сторона АМ.
2. Из п. 1 следует: т.к. середина отрезка АС= 3 см (то бишь сторона АМ) ⇒ AB=8см; AM=6 cм.
3. Найдём сумму большого треугольника АВС:
8 см + 7 см + 6 см = 21 см - сумма большого треугольника (то бишь АВС)
4. Дальше решаем через Х ( за Х - обозначим сторону АМ ) :
Х+8х+6х=21
15х=21
Х=21:15
Х= 1,4
1,4 см - сторона АМ
5. Теперь найдём площадь ( то бишь S ):
S= АB⋅АМ
S= 8 cм⋅1,4 см
S= 11,2см
ОТВЕТ: S(ABM)=11,2 см.
P.S.: задачу решил
ученик 7 класса.