Надо воспользоваться формулой: sin(2α) = 2*sin(α)*cos(α).
Функцию sin(α) выразим через cos(α).
sin(α) = √(1 - cos²(α)).
Подставим в первое уравнение:
-3/5 = 2*√(1 - cos²(α))*cos(α). Возведём обе части в квадрат.
9/25 = 4*(1 - cos²(α))*cos²(α). Приведём к общему знаменателю и раскроем скобки.
9 = 100cos²(α)) - 100cos^4(α).
Получили биквадратное уравнение. Введём замену: cos²(α) = t.
Тогда уравнение имеет вид: 100t² - 100t + 9 = 0.
Ищем дискриминант:
D=(-100)^2-4*100*9=10000-4*100*9=10000-400*9=10000-3600=6400;
Дискриминант больше 0, уравнение имеет 2 корня:
t_1=(√6400-(-100))/(2*100)=(80-(-100))/(2*100)=(80+100)/(2*100)=180/(2*100)=180/200=0,9;
t_2=(-√6400-(-100))/(2*100)=(-80-(-100))/(2*100)=(-80+100)/(2*100)=20/(2*100)=20/200=0,1.
Обратная замена: cos(α) = ±√t.
cos(α1,2) = ±√0,9 ≈ ±0,94868.
cos(α3,4) = ±√0,1 ≈ ±0,31623.
Данным косинусам соответствуют углы:
(α1,2) = 18,43495 и 161,5651 градусов,
(α3,4) = 71,5651 и 108,43495 градусов.
По заданию угол должен быть в промежутке (90° < α < 135°).
ответ: cos α = -√0,1 ≈ -0,31623.
AD = 16 см
Объяснение:
Чтобы боковые стороны трапеции ABCD пересеклись, нужно довести их вверх, сделав таким образом треугольник. Точка пересечения - Р. Образуется треугольник PAD. Мы знаем, что СD=АВ, так как это равнобокая трапеция, а значит АВ = 21 см. Углы А и D в трапеции равны, как при основании, значит треугольник PAD равнобедренный. Получается, что ВС - средняя линия ( делит сторону AP и PD пополам). Средняя линия треугольника равна половине основания (основание AD). Если ВС = 8см, то AD = 16 см.
надеюсь понятно объяснил
Надо найти площадь равнобедренной трапеции с основаниями 4*корень(2) и 6*корень(2) и углом между боковой стороной и большим основанием 45 градусов.
Высота такой трапеции равна корень(2);
(Если вы просто нарисуете по клеточкам, то поймете, почему.
На самом деле, она равна (a - b)*tg(Ф)/2; где Ф = 45 градусов, а - большое основание, b - малое. Если вы проведете высоту в трапеции из вершины малого основания на большое, то сразу увидите, почему это так.)
Поэтому площадь трапеции равна (6*корень(2)+4*корень(2))*корень(2)/2 = 10;