В стихотворении Фета «В пору любви, мечты, свободы.» (1855) - в счастливую пору детства и юности поэт не знал «душевной непогоды», то есть воздействия зла на душу, не верил, «.что будто по душе иной Проходит злоба полосами, Как тень от тучи громовой».
Зло в человеке, как тень от громовой тучи, - этот фетовский образ выражает мысль о природе зла:
туча есть сам дух зла, а его тень - тень от тучи, падающая вниз, в человеческие души, есть проникшее в человека зло, которое полосами захватывает его внутренний мир.
В пору жизненных испытаний (так развивается мысль стихотворения) пришлось «отрезвиться» - увидеть зло, зло в себе самом (в соответствии с важнейшим требованием аскетики), увидеть ту самую тень от тучи в своей душе. И это есть опыт познания собственной природы, который, так или иначе формируется, когда человек ищет путь к души.
Всю глубину зла и его внутренней неодолимости оценить сразу невозможно, оно раскрывается постепенно:
«.В душе сокрыта, // Беда спала. Но знал ли я, // Как живуща, как ядовита // Эдема старая змея!». Зло предстает в образе библейского змия, который искушал Адама в Раю, и его «тяжкое крыло», его присутствие, «слышит» порой поэт духовным слухом:
Находят дни: с самим собою
Бороться сердцу тяжело.
И духа злобы над собою
Я слышу тяжкое крыло.
Победить зло в себе оказалось несравненно труднее иных «побед» над собой («горе подавлять в себе», «улыбаться» людям): «знал ли я.!» - восклицает поэт. Зло внутреннее распознается им как воздействие внешней силы зла - в соответствии со святоотеческим учением.
Объяснение:
Даны вершины пирамиды А(3,-5,5), В(-5,1,0), С(3,0,5), D(1,-1,4).
1) Находим векторы ВА и ВС.
ВА = (3+5=8; -5-1=-6; 5-0=5) = (8; -6; 5).
Модуль равен √(64+36+25) = √125 = 5√5.
ВС = (3+5=8;0-1=-1; 5-0=5) = (8; -1; 5).
Модуль равен √(64+1+25) = √90 = 3√10.
cos B = (8*8+(-1)*(-6)+5*5)/(5√5*3√10) = 95/(75√2) = 19√2/30 ≈ 0,896.
∠B = arc cos 0,896 = 0,46086 радиан = 26,406 градуса.
2) Площадь треугольника ABС равна половине модуля векторного произведения ВА(8; -6; 5) на ВС(8; -1; 5).
Применим треугольную схему.
i j k | i j
8 -6 5 | 8 -6
8 -1 5 | 8 -1 =
= -30i + 40j - 8k - 40j + 5i + 48k = -25i + 0j + 40k = (-25; 0; 40).
Модуль равен √(625 + 0 + 1600) = √2225 = 5√89.
Площадь АВС равна (1/2)*5√89 = 5√89/2 ≈ 23,585 кв.ед.
3) Объём пирамиды равен (1/6) смешанного произведения (ВАхВС)*BD.
Находим вектор BD: В(-5,1,0), D(1,-1,4) = (1+5=6; -1-1=-2; 4-0=4) = (6; -2; 4).
BAxBC = (-25; 0; 40)
V = (1/6)*(-150+0+160) = 10/6 = 5/3 ≈ 1,67 куб.ед.
п.с. тогда т.к. углы при основании равны, то угол МРК равен тоже 70°, а т.к. РО биссектриса, то делит угол МРК пополам, а значит угол МРО равен 70:2=35°