Нарисуем треугольник и будем искать стороны: по величинам проекций сторон на оси координат ВС = √(4² + 4²) = √32 наклон ВС к оси х составляет 45° АВ = √(3² + 3²) = √18 наклон АВ к оси х составляет -45° поэтому в ΔАВС Уг. В = 90° cos B = 0 АС = √(7² + 1²) = √50 cos A = AB/AC = √18 : √50 = 3/5 = 0.6 cos C = BC/AC = √32 : √50 = 4/5 = 0.8
Сначала найдём высоту треугольника, лежащего в основании (она же является стороной треугольника-сечения). Треугольник в основании равносторонний, так как пирамида правильная. Применим одну из формул высоты равностороннего треугольника: h= а × √3/2 , где а - сторона. h= 9√3 × √3 /2 = 9 × 3 / 2 = 13,5 Теперь найдём параметры центра треугольника в основании пирамиды - это и будет та точка, в которой высота пирамиды делит высоту основания, образуя с ней прямой угол. Это важно для вычисления площади неправильного треугольника, которым и является искомое сечение пирамиды. В равностороннем треугольнике медианы пересекаются в центре, деля его высоты в соотношении 2:1 - 2 при угле, 1 при стороне. 13,5 :3 =4,5 - часть высоты от центра до стороны. 4,5 ×2 = 9 - часть высоты от угла до центра Таким образом мы имеем гипотенузу 15 и катет 9 прямоугольного треугольника, являющегося одной из двух частей сечения пирамиды. По теореме Пифагора найдём второй катет (Х-икс), являющийся высотой пирамиды. Х=√ (15²-9²)= √(225 - 81) = √144 = 12 Теперь мы имеем все данные для вычисления площади сечения. Сечение состоит из 2х прямоугольных треугольников (треугольник сечения, разделенный высотой пирамиды на два других). А площадь прямоугольного треугольника равна 1/2 произведения сторон, прилежащих к прямому углу. S1=12×9 /2 =54 S2=12×4,5 /2 =27 S1 + S2 = 54+27=81
ВС = √(4² + 4²) = √32 наклон ВС к оси х составляет 45°
АВ = √(3² + 3²) = √18 наклон АВ к оси х составляет -45°
поэтому в ΔАВС Уг. В = 90° cos B = 0
АС = √(7² + 1²) = √50
cos A = AB/AC = √18 : √50 = 3/5 = 0.6
cos C = BC/AC = √32 : √50 = 4/5 = 0.8