М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
26040717
26040717
03.01.2022 19:44 •  Геометрия

1)в правильный треугольный пирамиде сторона основания 6 см,а высота равна 10 см. определить полную поверхность пирамиды. 2)апофема пирамиды прав. треугольной равна 5 см,а высота равна 4 см. найти s(бок) пирамиды.

👇
Ответ:
Так как по условию ПРАВИЛЬНЫАЯ треугольная пирамида, то в основании лежит правильный треугольник.
S_o= \frac{a^2 \sqrt{3} }{4} = \frac{6^2 \sqrt{3} }{4} =9 \sqrt{3} - площадь основания

Найдем площадь боковой поверхности.
Так как сторона основания есть, то радиус вписанной окружности
r=a/2√3=6/2√3 = √3 см
С прямоугольного треугольника апофема равна
f= \sqrt{10^2+3} = \sqrt{103} см

Площадь боковой поверхности:  S_b=3\cdot \frac{a\cdot f}{2} =9 \sqrt{103}

Sп=S_o+S_b=9\sqrt{3}+9\sqrt{103}

ответ: 9\sqrt{3}+9\sqrt{103}

Вторая задачка

С прямоугольного треугольника радиус вписанной окружности(основания)
r= \sqrt{5^2-4^2} =3
По определению радиусу вписанной окружности правильного треугольника
сторона основания равна
r= \frac{a}{2 \sqrt{3} } \\ a=2 \sqrt{3} r=6 \sqrt{3}

S_b= 3\cdot \frac{a\cdot h}{2} =3\cdot \frac{6\sqrt{3}\cdot 5}{2} =45\sqrt{3}

ответ: 45\sqrt{3}
4,8(36 оценок)
Открыть все ответы
Ответ:
миша1135
миша1135
03.01.2022

Боковая поверхность - 3 трапеции, средняя линяя у каждой из трех - 4;

2 из них - с высотой 1;

грань, "противоположная" ребру длинны 1, - это равнобедренная трапеция, её высоту и надо вычислить, чтобы получить ответ.

проводим "вертикальную" плоскость через ребро 1, делящую основания "пополам" (то есть эта плоскость проходит через высоты оснований пирамиды, выходящие из вершин ребра 1).

сечение пирамиды, которое получится - это трапеция с боковой стороной 1, перпендикулярной основаниям, и основаниями 3*sqrt(3)/2 и 5*sqrt(3)/2. четвертая сторона легко вычисляется, и равна 2. Это и есть высота наклонной грани трапеции (поскольку сечение перпендикулярно основаниям пирамиды);

ответ S = 4*1+4*1+4*2 = 16 

4,8(15 оценок)
Ответ:
aptemacko
aptemacko
03.01.2022

Сделаем рисунок и обозначим вершины пирамиды АВСА1В1С1. Ребро ВВ1⊥АВС=1 см

Площадь боковой поверхности этой пирамиды -  сумма площадей трех трапеций: двух прямоугольных и одной равнобедренной - той, что противолежит  ребру ВВ1. 

В основаниях пирамиды правильные треугольники - следовательно,   длины  средней линии всех трапеций равны 0,5•(3+5)=4 см

Площадь прямоугольных граней  равна произведению  их средней линии на  длину высоты пирамиды, т.е.  . 

S (АВВ1А1)=S (ВВ1С1С)= 4•1=4 см²

Чтобы найти  высоту грани АА1С1С,  проведем в основаниях пирамиды высоты  ВН и В1К  и соединим К и Н. 

Плоскость прямоугольной трапеции ВНКВ1 перпендикулярна плоскости оснований, т.к. содержит в себе отрезок ВВ1, перпендикулярный обоим основаниям.  

Из К опустим высоту КТ. 

КН по теореме о трех перпендикулярах перпендикулярна АС и является высотой трапеции АСС1А1. 

В прямоугольном треугольнике КТН катет КТ=ВВ1=1см, катет НТ равен разности высот оснований пирамиды. 

ВК=(3√3):2

BH=(5√3):2

ТН=2√3):2=√3 см

КН=√(КТ²+НТ²)=√4=2 см

S (АСС1А1)=4*2=8 см²

S(бок)=4+4+8=16 см²


Основаниями усечённой пирамиды являются правильные треугольники со сторонами 5 см и 3 см соответстве
4,7(77 оценок)
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ