х- ребро было, тогда объем был х в кубе = х^3=у см куб
добавили к ребру 3, тогда стало х +3, значит объём стал (х+3)^3 = у+513, тогда
подставим у=х^3 в (х+3)^3 = у+513, получим:
(х+3)^3 = х^3+513
х^3-х^3+9х^2+27х+27-513=0
9х^2+27х-486=0
х^2+3х-54=0
Д=9+216=225
х1=(15+3)/2=9, тогда объём был 9*9*9=729, стал 12*12*12=1728 - не удовлетворяет условию
х2=(15-3)/2=6, тогда объём был 6*6*6=216, стал 9*9*9=729, 729-216=513, значит
изначально ребро куба было 6.
ответ: ребро в начале = 6
Удачи ! ) Отметь как лучшее.
х- ребро было, тогда объем был х в кубе = х^3=у см куб
добавили к ребру 3, тогда стало х +3, значит объём стал (х+3)^3 = у+513, тогда
подставим у=х^3 в (х+3)^3 = у+513, получим:
(х+3)^3 = х^3+513
х^3-х^3+9х^2+27х+27-513=0
9х^2+27х-486=0
х^2+3х-54=0
Д=9+216=225
х1=(15+3)/2=9, тогда объём был 9*9*9=729, стал 12*12*12=1728 - не удовлетворяет условию
х2=(15-3)/2=6, тогда объём был 6*6*6=216, стал 9*9*9=729, 729-216=513, значит
изначально ребро куба было 6.
ответ: ребро в начале = 6
Удачи ! ) Отметь как лучшее.
Задача на подобие треугольников.
Треугольники В₁РВ₂ и А₁РА₂ подобны, т.к. их углы при отрезках, лежащих на параллельных прямых, равны и угол Р - общий.
Известна длина основания меньшего треугольника А₁РА₂=6 см и отношение стороны РА₁ этого треугольника к части А₁В₁ соответственной стороны большего треугоьлника как 3:2
Сторона В₁Р большего треугольника относится к стороне А₁Р меньшего как 5:2, так как состоит из 3+2 частей.
Следовательно, при коэффициенте подобия 5/2
сторона В₁В₂=6*5:2=15 см