М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
dreygar
dreygar
29.04.2022 07:03 •  Геометрия

Дано окружность радиуса 5 с центром в начале координат найдите точки пересечения данной окружности с прямой x=3

👇
Ответ:
LarisaSergeeva
LarisaSergeeva
29.04.2022
1 точка пересечения (-4:3)
2 точка пересечения (4:3)

Вроде так
4,8(42 оценок)
Открыть все ответы
Ответ:
H1e1l1p
H1e1l1p
29.04.2022
трапеция АВСД, МН-отрезок, ВС=1, АД=6, МН=4, продлеваем боковые стороны до пересечения их в точке О, треугольник АОС подобен треуг.МОН и ВОС по двум равным соответственным углам при основании треугольников, в подобных треугольниках площади относятся как квадраты соответствующих сторон, ВС²/АД²=S треуг.ВОС /S треуг.АОД, 1/36=S ΔВОС/S ΔАОД, S ΔВОС= SΔАОД/36, МН²/АД²=S ΔМОН/S ΔАОД, 16/36=S ΔМОН/S ΔАОД, S ΔМОН=16S ΔАОД/36, S трап.МВСН=S ΔМОН-S ΔВОС=16S ΔАОД/36 - S ΔАОД/36=15S ΔАОД/36, S трапец.АМНД=S ΔАОД - S ΔМОН=S ΔАОД - 15S ΔАОД/36=21S ΔАОД/36, трап.МВСН / трапец.АМНД = (15S ΔАОД/36) / (21S ΔАОД/36)=15/21=5/7
4,6(96 оценок)
Ответ:

1.Плоскость, имеющая с шаровой поверхностью лишь одну общую точку, называется касательной плоскостью, а общая точка — точка касания. Касательная к сфере плоскость перпендикулярна к радиусу, проведенному в точку касания

Из теоремы следует, что, когда расстояние от центра шара до плоскости меньше радиуса, сечение шара этой плоскостью – круг. Если плоскость удалена от центра сферы на расстояние R, то она является касательной плоскостью. Теорема 5.4. Плоскости, равноудаленные от центра сферы, пересекают ее по равным окружностям.

2.Сечение шара представляет собой круг, площадь которого равна Sсеч = πr2, где r - радиус сечения. По условию, площадь сечения шара равна 16π см2, значит:

πr2 = 16π;

r2 = 16;

r = √16 = 4 см.

Из прямоугольного треугольника, образованного радиусом r данного сечения, радиусом шара R и перпендикуляром l, проведенным из центра шара к плоскости, равным 3 см, по теореме Пифагора можем найти радиус шара:

R2 = r2 + l2 = 42 + 32 = 16 + 9 = 25;

R = √25 = 5 см.

Площадь поверхности шара определяется по формуле:

S = 4πR2 = 4 * π * 52 = 100π ≈ 314,16 см2.

3. смотри на картинке нашла в интернете


1. Cфopмyлиpyйтe oпpeдeлeниe кacaтeльнoй плocкocти к cфepe. Дoкaжитe тeopeму o кacaтeльнoй плocкocти
4,7(31 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ