Заметим, что треугольник АВС - равнобедренный, так как угол ВКА равен углу КАD, как накрест лежащие углы при параллельных прямых. А в свою очередь угол КАD равен углу ВКА по определению биссектрисы. Поэтому треугольник АВК - равнобедренный. Значит стороны АВ и ВК равны. АВ=ВК=7 см. Периметр параллелограмма равен 2*АВ+2*ВС=2*7+2*(ВК+КС)=14+2*(7+8)=14+2*15=14+30=44 см
1) Медиана — линия, проведенная из вершины треугольника к середине противоположной стороны. 2) В равнобедренном треугольнике медиана, проведенная к основанию, является биссектрисой и высотой. Используя 2 вышеуказанных правила получаем, что медиана делит основание на 2 равновеликих отрезка. Исходя из этого, знаем значение боковой стороны (гипотенузы) и найденного отрезка (катета). А с учетом того, что медиана будет являться высотой (согласно 2-му правилу), то медиану сможем найти применив теорему Пифагора
на СД отметим середину Е. МЕ//ВС//АД=10см соеденим МС и найдем ее длину МС гипатенуза прямоугольного треугольника ВСМ МС= √(10^2+5^2)= √125
радиус окружности с центром М что бы она касалась прямой СД будет равна МЕ. МЕ=10см
что бы не имела с прямой СД общих точек то радиус круга меньше МЕ и больше МС. от этого получаем пусть радиус круга будет (х) х> 0, х <МЕ то есть х <10 и х>МС то есть х> √125 ответ изобразим так (0; 10)&(125;+○○) что бы имел с СД две общие точки радиус круга так же (х) будет х> МЕ и х <МС то есть 10 <х < √125 (10; √125)