Биссектриса, медиана, высота и серединный перпендикуляр, проведённые к основанию равнобедренного треугольника, совпадают между собой. Углы, противолежащие равным сторонам равнобедренного треугольника, равны между собой. Если две стороны и угол между ними одного треугольника равны соответственно двум сторонам и углу между ними другого треугольника, то такие треугольники равны." Решение: Итак, треугольники АМD и DNC - равны между собой, так как AD=DC (BD- медиана), NC=МA (так как МВ=BN - дано, а АВ=ВС - треугольник АВС равнобедренный) и улы ВАС и ВСА между равными сторонами равны. Из равенства тр-ков вытекает равенство сторон МD и ND. Что и требовалось доказать
37. Решение:
∠1=65° (как вертикальные)
∠1 и угол в 65° равны, как соответственные углы при пересечении двух прямых секущей. Отсюда прямые параллельны. Значит ∠2=78° (как соответственные)
Поскольку сумма смежных углов равна 180°, то
х=180°-∠2=180°-78°=102°
ответ: 102°
38. Решение (аналогично):
∠1=70° (как вертикальные)
∠1 и угол в 70° равны, как соответственные углы при пересечении двух прямых секущей. Отсюда прямые параллельны. Значит ∠2=50° (как соответственные)
х=∠2 (как вертикальные)
х=50°
ответ: 50°
(Чертёж в приложении)