1) Рассмотрим треугольники ВАД и СДА -прямоугольные, у них: АД-общая, АВ=СД по условию, ⇒ ΔВАД=ΔСДА по двум катетам; но в равных треугольниках соответственные углы равны,⇒∠В = ∠С, чтд 2)Рассмотрим треугольники ВАД и СДА -прямоугольные, у них: АД-общая, ∠1=∠2 по условию, ⇒ ΔВАД=ΔСДА по гипотенузе и острому углу; но в равных треугольниках соответственные стороныравны,⇒АВ=СД , чтд 3)Рассмотрим треугольники АВК и АСH -прямоугольные, у них: ∠A- общий, гипотенузы АВ и АС равны АВ=АС по условию, ⇒ ΔАВК=ΔАСH по гипотенузе и острому углу, чтд
Объяснение:
Составим систему из данных уравнений
8х+9у=7 |умножим на 8
7х-8у=-3 |умножим на 9
64х+72у=56
63х-72у=-27
Сложим
127х=29
х=29\127,то есть х>0
29\127*8+9у=56
232\127 -56=-9у
(232-12992):127=-9у
-12760\127=-9у
12760\127=9y
Отсюда у>0,то при х>0 и y>0,точка пересечения лежит в первой четверти