М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
nastusya0307
nastusya0307
21.03.2023 04:17 •  Геометрия

1)в прямоугольном треугольнике катеты равна 8 см и 15 см.найти периметр треугольника. 2)из одной точки к данной прямой проведены две равные наклонные.найти расстояние между основаниями наклонных,если проекция одной из них равна 16 см. 3)доказать,что сумма диагоналей трапеции больше суммы её оснований.

👇
Ответ:
albina0101011
albina0101011
21.03.2023

1) По теореме Пифагора:

  АВ² = АС² + ВС²

АВ² = 8² + 15² = 64 + 225 = 289

АВ = √289 = 17 см

2) Прямая а и наклонные АВ и АС.

АВ = АС по условию.

В и С - основания наклонных, значит найти надо отрезок ВС.

Пусть АН⊥а, тогда ВН = 16 см - проекция наклонной АВ на прямую а.

ΔАВС равнобедренный, АН - высота и медиана (по свойству равнобедренного треугольника), ⇒

ВС = 2ВН = 2 · 16 = 32 см

3) Доказать: AD + BC < AC + BD

В треугольнике каждая сторона меньше суммы двух других его сторон.

ΔAOD:   AD < AO + OD

ΔBOC:   BC < BO + OC

Складываем эти неравенства:

AD + BC < AO + OD + BO + OC, ⇒

AD + BC < AC + BD


1)в прямоугольном треугольнике катеты равна 8 см и 15 см.найти периметр треугольника. 2)из одной точ
4,7(88 оценок)
Открыть все ответы
Ответ:
Пусть О - точка пересечения медиан треугольника АВС. Треугольники AOP и BOM подобны по двум  углам (два угла равны по условию, еще два угла вертикальные). Тогда:
\frac{AO}{OB} = \frac{PO}{OM}
Так как медианы точкой пересечения делятся в отношении 2:1, то:
\frac{ \frac{2}{3} AM}{ \frac{2}{3} BP} = \frac{\frac{1}{3}BP}{\frac{1}{3}AM}&#10;\\\&#10;\frac{ AM}{ BP} = \frac{BP}{AM}&#10;\\\&#10;AM^2=BP^2&#10;\\\&#10;\Rightarrow AM=BP=1
Если медианы, проведенные к двум сторонам треугольника равны, то и сами стороны также равны. Значит, АС=ВС и треугольник АВС равнобедренный.
Рассмотрим треугольник АМС. По теореме косинусов, учитывая соотношение АС=2СМ, получим:
AM^2=AC^2+CM^2-2\cdot AC\cdot CM\cdot\cos ACB&#10;\\\&#10;1^2=(2CM)^2+CM^2-2\cdot 2CM\cdot CM\cdot0.8&#10;\\\&#10;1=4CM^2+CM^2-3.2CM^2&#10;\\\&#10;1=1.8CM^2&#10;\\\&#10;CM^2= \frac{1}{1.8} = \frac{5}{9} &#10;\\\&#10;CM= \frac{ \sqrt{5} }{3}
Следовательно стороны в два раза больше: AC=BC= \frac{2 \sqrt{5} }{3}
Тогда площадь треугольника найдем как половину произведения двух его сторон на синус угла между ними:
S= \frac{1}{2} \cdot AC\cdot BC\cdot \sinACB&#10;\\\&#10;S= \frac{1}{2} \cdot AC^2\cdot \sqrt{1-\cos ACB} &#10;\\\&#10;S= \frac{1}{2} \cdot ( \frac{2 \sqrt{5} }{3})^2\cdot \sqrt{1-0.8}=\frac{1}{2} \cdot \frac{4\cdot5 }{9} \cdot \frac{3}{5} = \frac{2}{3}
ответ: 2/3
4,4(4 оценок)
Ответ:
vlad22803
vlad22803
21.03.2023
Обычно в задачах на параллельные прямые есть две прямые и секущая. Отсюда мы узнаем три новых правила.
1.Накрест лежащие углы при секущей равны. ( Если Один угол находится снизу,допустим справа, а другой слева вверху и наоборот)
2. Соответственное углы при секущей равны.( Один угол находится над нижней прямой, а другой на верхней прямой)
3. Сумма односторонних углов при секущей равна 180 градусов. ( Находятся на одной стороне)
Все углы обычно обозначаются так: угол 1,2,3,4,5,6,7,8.
Также тебе пригодятся знания о вертикальных углах
Можете объяснить понятно как решаются по на тему параллельные прямые. например напишите какую-нибудь
4,4(40 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ