Дано: abc-треугольник ab=bc=ca s=4√3 найти: ab-? вообщем вот так получилось у меня вместе с формулой свел для равностороннего посчитать не могу.напишите люди добрые решение !
Т.к. АВС - равнобедренный, то углы А и С при основании АС равны. Пусть <A=<C=x. Рассмотрим равнобедренный по условию треугольник CAD. Углы 1 и 2 при его основании CD равны. Значит <C=<2=<1=x. Тогда <BDA=180-<1=180-x. В равнобедренном по условию треугольнике ADB углы 3 и 4 при основании АВ также равны, т.е. <B=<4=<3=(180-<BDA):2=(180-180+x):2=x:2. Таким образом, мы выразили все три угла А, В и С треугольника АВС. Зная сумму углов треугольника, запишем: <A+<B+<C=180 x+x:2+x=180 5x=360 x=72 <A=<C=72°, <B=72:2=36°.
Высота горы ≈ 0,683 км ≈ 683 м. Объяснение: Дано: ΔABC; ВС - высота горы; ∠BAC = 30°; ∠BDC = 45°; AD = 0,5 км. Найти высоту горы BC. Решение. 1) Расстоянием от точки до прямой является длина перпендикуляра, опущенного из этой точки на прямую. ⇒ BC⊥AC, ΔABC прямоугольный, ∠С = 90°, высота горы - катет BC. 2) В ΔABC ∠BAC = 30° (по условию), ∠ACB = 90°, тогда ∠ABC = 180° - 30° - 90° = 60°. Обозначим для удобства высоту горы катет ВС = x. В прямоугольном треугольнике катет, лежащий против угла 30° равен половине гипотенузы ⇒ гипотенуза AB = 2x км. 3) В ΔDBC ∠BDC = 45° (по условию), ∠DCB = 90°, тогда ∠DBC = 180° - 90° - 45° = 45°. ⇒ ΔDBC равнобедренный, так как имеет два равных угла ⇒ DC = BC = x км. 4) Тогда в ΔABC сторона AC = x + 0,5 км. Из ΔABC найти BC можно двумя По теореме Пифагора: