1. ∠BAC=18°; ∠CAB = 72°.
2. 2 см, 7 см.
3. АС=BD=24 см.
4. 25°, 25°, 130°.
5. 20°, 70°, 90°.
Объяснение:
1. ∠ACB=x. Тогда ∠BAC=4x.
Сумма углов треугольника равна 180°. Тук как угол В=90°, то
х+4х=90°;
5х=90°;
х=18° - угол BAC;
угол CAB =4x=4*18= 72°.
***
2. P=2(a+b) = 18 см, где а=х см, b=x+5 см .
2(х+х+5)=18;
2х+5=9;
2х=4;
х=2 см - меньшая сторона;
Большая сторона равна х+5=2+5=7 см.
Проверим:
Р=2(2+7)=2*9=18 см. Всё верно!
***
3) Треугольник АВО - равносторонний АВ=ВО=АО=12 см.
Диагонали в прямоугольнике делятся пополам. Следовательно АС=BD=2*AO=24 см .
***
4. В ромбе все стороны и противоположные углы равны. Следовательно треугольник АВС - равнобедренный с углом при вершине 130°.
Сумма углов в треугольнике равна 180°.
∠САВ+∠АВС+∠ВСА=180°;
∠ВАС=∠ВСА=(180°-130°)/2=25°.
***
5. Диагонали в ромбе пересекаются под углом 90° и углы при вершине делит пополам. Следовательно угол ∠АВО =∠АВС/2=140°/2=70°.
Сумма углов в треугольнике равна 180°:
∠АВО+∠ВОА+∠ОАВ=180°.
∠ВАО=180°-(70°+90°)=180°-160°=20°;
Профессорская задачка :)
1. Вс задача. В произвольном треугольнике две прямые, выходящие из разных вершин, делятся в точке пересечения в отношении 2:1 и 1:1. Нужно найти, в каком отношении они делят стороны. На самом деле, для заданной задачи достаточно найти, в каком отношении делится сторона, к которой проведена та прямая, которая длится в отношении 2:1. На первом рисунке - простое решение этой задачи. (Не надо путать обозначения тут и при решении основной задачи).
Задано ВК/KN = 1; AK/KM = 2; надо найти BM/BC.
Проводится PM II AC, треугольники PKM и AKN подобны, и PK/KN = KM/AK = 1/2; но КN = BN/2, то есть PN = BN/4; тогда и BP = BN/4; а отсюда BM = BC/4;
2. Собственно решение. Я изменил обозначение точки пересечения медиан трегольника АВС на букву G. O - центр описанной окружности, Н - ортоцентр. Точка Р пересечения биссектрисы угла А и GН делит GН пополам.
Поскольку АР - биссектриса угла А, то её точка пересечения с окружностью N делит дугу ВС пополам, то есть совпадает с точкой пересечения перпендикуляра к ВС из центра О.
Легко увидеть, что угол DNA между биссектрисой и этим диаметром, обозначенный как α, равен (угол АСВ - угол АВС)/2 (проще всего это понять, если провести через А хорду АА1 II ВС, тогда дуга ВА1 = дуга АС, и угол А1NA = угол А1СА, а DN биссектриса угла A1NA), то есть α = 15°;
Теперь самое главное. Точки O, G и Н лежат на прямой Эйлера, и OG = GH/2; Отсюда следует, что OG = GP = PH; кроме того, точка G делит АК в отношении AG/GK = 2 (ну, это же медиана тр-ка АВС...)
Согласно вс задаче из треугольника AON получается OK = ON/4; то есть расстояние от О до хорды ВС равно четверти радиуса окружности. Отсюда легко найти радиус R описанной окружности. R^2 = 1^2 + (R/4)^2; R = 4/√15;
Для того, чтобы найти площадь, нужно найти АМ. Центральный угол DOA равен 2α = 30°; и равен углу ОАМ, откуда сразу видно, что АМ = ОК + АО*cos(2α) = R*(1/4 + cos(2α)) = R(1/4 + √3/2);
S = ВС*АМ/2 = (4/√15)*(1 + 2√3)/8 = (1 + 2√3)/(2√15);
Я, конечно, мог и ошибиться в арифметике, так что проверяйте, но смысл решения понятен :)
cosB=(AB²+BC²-AC²)/2AB*BC=(64+225-289)/2*8*15=0
<B=90гр